All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.random.AbstractWell Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.random;

import java.io.Serializable;

import org.hipparchus.util.FastMath;


/**
 * This abstract class implements the WELL class of pseudo-random number generator
 * from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto.
 * 

* This generator is described in a paper by François Panneton, * Pierre L'Ecuyer and Makoto Matsumoto * * Improved Long-Period Generators Based on Linear Recurrences Modulo 2 * ACM Transactions on Mathematical Software, 32, 1 (2006). The errata for the paper * are in * wellrng-errata.txt. * * @see WELL Random number generator */ public abstract class AbstractWell extends IntRandomGenerator implements Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = 20150223L; /** Current index in the bytes pool. */ protected int index; /** Bytes pool. */ protected final int[] v; /** Creates a new random number generator. *

The instance is initialized using the current time plus the * system identity hash code of this instance as the seed.

* @param k number of bits in the pool (not necessarily a multiple of 32) */ protected AbstractWell(final int k) { this(k, null); } /** Creates a new random number generator using a single int seed. * @param k number of bits in the pool (not necessarily a multiple of 32) * @param seed the initial seed (32 bits integer) */ protected AbstractWell(final int k, final int seed) { this(k, new int[] { seed }); } /** * Creates a new random number generator using an int array seed. * @param k number of bits in the pool (not necessarily a multiple of 32) * @param seed the initial seed (32 bits integers array), if null * the seed of the generator will be related to the current time */ protected AbstractWell(final int k, final int[] seed) { final int r = calculateBlockCount(k); this.v = new int[r]; this.index = 0; // initialize the pool content setSeed(seed); } /** * Creates a new random number generator using a single long seed. * @param k number of bits in the pool (not necessarily a multiple of 32) * @param seed the initial seed (64 bits integer) */ protected AbstractWell(final int k, final long seed) { this(k, new int[] { (int) (seed >>> 32), (int) (seed & 0xffffffffl) }); } /** * Reinitialize the generator as if just built with the given int array seed. *

* The state of the generator is exactly the same as a new * generator built with the same seed. * * @param seed the initial seed (32 bits integers array). If null * the seed of the generator will be the system time plus the system identity * hash code of the instance. */ @Override public void setSeed(final int[] seed) { if (seed == null) { setSeed(System.currentTimeMillis() + System.identityHashCode(this)); return; } System.arraycopy(seed, 0, v, 0, FastMath.min(seed.length, v.length)); if (seed.length < v.length) { for (int i = seed.length; i < v.length; ++i) { final long l = v[i - seed.length]; v[i] = (int) ((1812433253l * (l ^ (l >> 30)) + i) & 0xffffffffL); } } index = 0; clearCache(); // Clear normal deviate cache } /** * Calculate the number of 32-bits blocks. * @param k number of bits in the pool (not necessarily a multiple of 32) * @return the number of 32-bits blocks */ private static int calculateBlockCount(final int k) { // the bits pool contains k bits, k = r w - p where r is the number // of w bits blocks, w is the block size (always 32 in the original paper) // and p is the number of unused bits in the last block final int w = 32; return (k + w - 1) / w; } /** * Inner class used to store the indirection index table which is fixed * for a given type of WELL class of pseudo-random number generator. */ protected static final class IndexTable { /** * Index indirection table giving for each index its predecessor * taking table size into account. */ private final int[] iRm1; /** * Index indirection table giving for each index its second predecessor * taking table size into account. */ private final int[] iRm2; /** * Index indirection table giving for each index the value index + m1 * taking table size into account. */ private final int[] i1; /** * Index indirection table giving for each index the value index + m2 * taking table size into account. */ private final int[] i2; /** * Index indirection table giving for each index the value index + m3 * taking table size into account. */ private final int[] i3; /** * Creates a new pre-calculated indirection index table. * @param k number of bits in the pool (not necessarily a multiple of 32) * @param m1 first parameter of the algorithm * @param m2 second parameter of the algorithm * @param m3 third parameter of the algorithm */ public IndexTable(final int k, final int m1, final int m2, final int m3) { final int r = calculateBlockCount(k); // precompute indirection index tables. These tables are used for optimizing access // they allow saving computations like "(j + r - 2) % r" with costly modulo operations iRm1 = new int[r]; iRm2 = new int[r]; i1 = new int[r]; i2 = new int[r]; i3 = new int[r]; for (int j = 0; j < r; ++j) { iRm1[j] = (j + r - 1) % r; iRm2[j] = (j + r - 2) % r; i1[j] = (j + m1) % r; i2[j] = (j + m2) % r; i3[j] = (j + m3) % r; } } /** * Returns the predecessor of the given index modulo the table size. * @param index the index to look at * @return (index - 1) % table size */ public int getIndexPred(final int index) { return iRm1[index]; } /** * Returns the second predecessor of the given index modulo the table size. * @param index the index to look at * @return (index - 2) % table size */ public int getIndexPred2(final int index) { return iRm2[index]; } /** * Returns index + M1 modulo the table size. * @param index the index to look at * @return (index + M1) % table size */ public int getIndexM1(final int index) { return i1[index]; } /** * Returns index + M2 modulo the table size. * @param index the index to look at * @return (index + M2) % table size */ public int getIndexM2(final int index) { return i2[index]; } /** * Returns index + M3 modulo the table size. * @param index the index to look at * @return (index + M3) % table size */ public int getIndexM3(final int index) { return i3[index]; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy