org.hipparchus.random.AbstractWell Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.random;
import java.io.Serializable;
import org.hipparchus.util.FastMath;
/**
* This abstract class implements the WELL class of pseudo-random number generator
* from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto.
*
* This generator is described in a paper by François Panneton,
* Pierre L'Ecuyer and Makoto Matsumoto
*
* Improved Long-Period Generators Based on Linear Recurrences Modulo 2
* ACM Transactions on Mathematical Software, 32, 1 (2006). The errata for the paper
* are in
* wellrng-errata.txt.
*
* @see WELL Random number generator
*/
public abstract class AbstractWell extends IntRandomGenerator implements Serializable {
/** Serializable version identifier. */
private static final long serialVersionUID = 20150223L;
/** Current index in the bytes pool. */
protected int index;
/** Bytes pool. */
protected final int[] v;
/** Creates a new random number generator.
*
The instance is initialized using the current time plus the
* system identity hash code of this instance as the seed.
* @param k number of bits in the pool (not necessarily a multiple of 32)
*/
protected AbstractWell(final int k) {
this(k, null);
}
/** Creates a new random number generator using a single int seed.
* @param k number of bits in the pool (not necessarily a multiple of 32)
* @param seed the initial seed (32 bits integer)
*/
protected AbstractWell(final int k, final int seed) {
this(k, new int[] { seed });
}
/**
* Creates a new random number generator using an int array seed.
* @param k number of bits in the pool (not necessarily a multiple of 32)
* @param seed the initial seed (32 bits integers array), if null
* the seed of the generator will be related to the current time
*/
protected AbstractWell(final int k, final int[] seed) {
final int r = calculateBlockCount(k);
this.v = new int[r];
this.index = 0;
// initialize the pool content
setSeed(seed);
}
/**
* Creates a new random number generator using a single long seed.
* @param k number of bits in the pool (not necessarily a multiple of 32)
* @param seed the initial seed (64 bits integer)
*/
protected AbstractWell(final int k, final long seed) {
this(k, new int[] { (int) (seed >>> 32), (int) (seed & 0xffffffffl) });
}
/**
* Reinitialize the generator as if just built with the given int array seed.
*
* The state of the generator is exactly the same as a new
* generator built with the same seed.
*
* @param seed the initial seed (32 bits integers array). If null
* the seed of the generator will be the system time plus the system identity
* hash code of the instance.
*/
@Override
public void setSeed(final int[] seed) {
if (seed == null) {
setSeed(System.currentTimeMillis() + System.identityHashCode(this));
return;
}
System.arraycopy(seed, 0, v, 0, FastMath.min(seed.length, v.length));
if (seed.length < v.length) {
for (int i = seed.length; i < v.length; ++i) {
final long l = v[i - seed.length];
v[i] = (int) ((1812433253l * (l ^ (l >> 30)) + i) & 0xffffffffL);
}
}
index = 0;
clearCache(); // Clear normal deviate cache
}
/**
* Calculate the number of 32-bits blocks.
* @param k number of bits in the pool (not necessarily a multiple of 32)
* @return the number of 32-bits blocks
*/
private static int calculateBlockCount(final int k) {
// the bits pool contains k bits, k = r w - p where r is the number
// of w bits blocks, w is the block size (always 32 in the original paper)
// and p is the number of unused bits in the last block
final int w = 32;
return (k + w - 1) / w;
}
/**
* Inner class used to store the indirection index table which is fixed
* for a given type of WELL class of pseudo-random number generator.
*/
protected static final class IndexTable {
/**
* Index indirection table giving for each index its predecessor
* taking table size into account.
*/
private final int[] iRm1;
/**
* Index indirection table giving for each index its second predecessor
* taking table size into account.
*/
private final int[] iRm2;
/**
* Index indirection table giving for each index the value index + m1
* taking table size into account.
*/
private final int[] i1;
/**
* Index indirection table giving for each index the value index + m2
* taking table size into account.
*/
private final int[] i2;
/**
* Index indirection table giving for each index the value index + m3
* taking table size into account.
*/
private final int[] i3;
/**
* Creates a new pre-calculated indirection index table.
* @param k number of bits in the pool (not necessarily a multiple of 32)
* @param m1 first parameter of the algorithm
* @param m2 second parameter of the algorithm
* @param m3 third parameter of the algorithm
*/
public IndexTable(final int k, final int m1, final int m2, final int m3) {
final int r = calculateBlockCount(k);
// precompute indirection index tables. These tables are used for optimizing access
// they allow saving computations like "(j + r - 2) % r" with costly modulo operations
iRm1 = new int[r];
iRm2 = new int[r];
i1 = new int[r];
i2 = new int[r];
i3 = new int[r];
for (int j = 0; j < r; ++j) {
iRm1[j] = (j + r - 1) % r;
iRm2[j] = (j + r - 2) % r;
i1[j] = (j + m1) % r;
i2[j] = (j + m2) % r;
i3[j] = (j + m3) % r;
}
}
/**
* Returns the predecessor of the given index modulo the table size.
* @param index the index to look at
* @return (index - 1) % table size
*/
public int getIndexPred(final int index) {
return iRm1[index];
}
/**
* Returns the second predecessor of the given index modulo the table size.
* @param index the index to look at
* @return (index - 2) % table size
*/
public int getIndexPred2(final int index) {
return iRm2[index];
}
/**
* Returns index + M1 modulo the table size.
* @param index the index to look at
* @return (index + M1) % table size
*/
public int getIndexM1(final int index) {
return i1[index];
}
/**
* Returns index + M2 modulo the table size.
* @param index the index to look at
* @return (index + M2) % table size
*/
public int getIndexM2(final int index) {
return i2[index];
}
/**
* Returns index + M3 modulo the table size.
* @param index the index to look at
* @return (index + M3) % table size
*/
public int getIndexM3(final int index) {
return i3[index];
}
}
}