All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.geometry.euclidean.twod.hull.MonotoneChain Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.geometry.euclidean.twod.hull;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

import org.hipparchus.geometry.euclidean.twod.Line;
import org.hipparchus.geometry.euclidean.twod.Vector2D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.Precision;

/**
 * Implements Andrew's monotone chain method to generate the convex hull of a finite set of
 * points in the two-dimensional euclidean space.
 * 

* The runtime complexity is O(n log n), with n being the number of input points. If the * point set is already sorted (by x-coordinate), the runtime complexity is O(n). *

* The implementation is not sensitive to collinear points on the hull. The parameter * {@code includeCollinearPoints} allows to control the behavior with regard to collinear points. * If {@code true}, all points on the boundary of the hull will be added to the hull vertices, * otherwise only the extreme points will be present. By default, collinear points are not added * as hull vertices. *

* The {@code tolerance} parameter (default: 1e-10) is used as epsilon criteria to determine * identical and collinear points. * * @see * Andrew's monotone chain algorithm (Wikibooks) */ public class MonotoneChain extends AbstractConvexHullGenerator2D { /** * Create a new MonotoneChain instance. */ public MonotoneChain() { this(false); } /** * Create a new MonotoneChain instance. * @param includeCollinearPoints whether collinear points shall be added as hull vertices */ public MonotoneChain(final boolean includeCollinearPoints) { super(includeCollinearPoints); } /** * Create a new MonotoneChain instance. * @param includeCollinearPoints whether collinear points shall be added as hull vertices * @param tolerance tolerance below which points are considered identical */ public MonotoneChain(final boolean includeCollinearPoints, final double tolerance) { super(includeCollinearPoints, tolerance); } /** {@inheritDoc} */ @Override public Collection findHullVertices(final Collection points) { final List pointsSortedByXAxis = new ArrayList(points); // sort the points in increasing order on the x-axis Collections.sort(pointsSortedByXAxis, new Comparator() { /** {@inheritDoc} */ @Override public int compare(final Vector2D o1, final Vector2D o2) { final double tolerance = getTolerance(); // need to take the tolerance value into account, otherwise collinear points // will not be handled correctly when building the upper/lower hull final int diff = Precision.compareTo(o1.getX(), o2.getX(), tolerance); if (diff == 0) { return Precision.compareTo(o1.getY(), o2.getY(), tolerance); } else { return diff; } } }); // build lower hull final List lowerHull = new ArrayList(); for (Vector2D p : pointsSortedByXAxis) { updateHull(p, lowerHull); } // build upper hull final List upperHull = new ArrayList(); for (int idx = pointsSortedByXAxis.size() - 1; idx >= 0; idx--) { final Vector2D p = pointsSortedByXAxis.get(idx); updateHull(p, upperHull); } // concatenate the lower and upper hulls // the last point of each list is omitted as it is repeated at the beginning of the other list final List hullVertices = new ArrayList(lowerHull.size() + upperHull.size() - 2); for (int idx = 0; idx < lowerHull.size() - 1; idx++) { hullVertices.add(lowerHull.get(idx)); } for (int idx = 0; idx < upperHull.size() - 1; idx++) { hullVertices.add(upperHull.get(idx)); } // special case: if the lower and upper hull may contain only 1 point if all are identical if (hullVertices.isEmpty() && ! lowerHull.isEmpty()) { hullVertices.add(lowerHull.get(0)); } return hullVertices; } /** * Update the partial hull with the current point. * * @param point the current point * @param hull the partial hull */ private void updateHull(final Vector2D point, final List hull) { final double tolerance = getTolerance(); if (hull.size() == 1) { // ensure that we do not add an identical point final Vector2D p1 = hull.get(0); if (p1.distance(point) < tolerance) { return; } } while (hull.size() >= 2) { final int size = hull.size(); final Vector2D p1 = hull.get(size - 2); final Vector2D p2 = hull.get(size - 1); final double offset = new Line(p1, p2, tolerance).getOffset(point); if (FastMath.abs(offset) < tolerance) { // the point is collinear to the line (p1, p2) final double distanceToCurrent = p1.distance(point); if (distanceToCurrent < tolerance || p2.distance(point) < tolerance) { // the point is assumed to be identical to either p1 or p2 return; } final double distanceToLast = p1.distance(p2); if (isIncludeCollinearPoints()) { final int index = distanceToCurrent < distanceToLast ? size - 1 : size; hull.add(index, point); } else { if (distanceToCurrent > distanceToLast) { hull.remove(size - 1); hull.add(point); } } return; } else if (offset > 0) { hull.remove(size - 1); } else { break; } } hull.add(point); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy