org.hipparchus.geometry.euclidean.oned.OrientedPoint Maven / Gradle / Ivy
Show all versions of hipparchus-geometry Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.geometry.euclidean.oned;
import org.hipparchus.geometry.Point;
import org.hipparchus.geometry.Vector;
import org.hipparchus.geometry.partitioning.Hyperplane;
/** This class represents a 1D oriented hyperplane.
* An hyperplane in 1D is a simple point, its orientation being a
* boolean.
* Instances of this class are guaranteed to be immutable.
*/
public class OrientedPoint implements Hyperplane {
/** Vector location. */
private final Vector1D location;
/** Orientation. */
private boolean direct;
/** Tolerance below which points are considered to belong to the hyperplane. */
private final double tolerance;
/** Simple constructor.
* @param location location of the hyperplane
* @param direct if true, the plus side of the hyperplane is towards
* abscissas greater than {@code location}
* @param tolerance tolerance below which points are considered to belong to the hyperplane
*/
public OrientedPoint(final Vector1D location, final boolean direct, final double tolerance) {
this.location = location;
this.direct = direct;
this.tolerance = tolerance;
}
/** Copy the instance.
* Since instances are immutable, this method directly returns
* the instance.
* @return the instance itself
*/
@Override
public OrientedPoint copySelf() {
return this;
}
/** Get the offset (oriented distance) of a vector.
* @param vector vector to check
* @return offset of the vector
*/
public double getOffset(Vector vector) {
return getOffset((Point) vector);
}
/** {@inheritDoc} */
@Override
public double getOffset(final Point point) {
final double delta = ((Vector1D) point).getX() - location.getX();
return direct ? delta : -delta;
}
/** Build a region covering the whole hyperplane.
* Since this class represent zero dimension spaces which does
* not have lower dimension sub-spaces, this method returns a dummy
* implementation of a {@link
* org.hipparchus.geometry.partitioning.SubHyperplane SubHyperplane}.
* This implementation is only used to allow the {@link
* org.hipparchus.geometry.partitioning.SubHyperplane
* SubHyperplane} class implementation to work properly, it should
* not be used otherwise.
* @return a dummy sub hyperplane
*/
@Override
public SubOrientedPoint wholeHyperplane() {
return new SubOrientedPoint(this, null);
}
/** {@inheritDoc}.
* Since this class represent zero dimension spaces which does
* not have lower dimension sub-spaces, this method returns a dummy
* implementation of a {@link
* org.hipparchus.geometry.partitioning.SubHyperplane SubHyperplane}.
* This implementation is only used to allow the {@link
* org.hipparchus.geometry.partitioning.SubHyperplane
* SubHyperplane} class implementation to work properly, it should
* not be used otherwise.
* @return a dummy sub hyperplane
*/
@Override
public SubOrientedPoint emptyHyperplane() {
return new SubOrientedPoint(this, null);
}
/** Build a region covering the whole space.
* @return a region containing the instance (really an {@link
* IntervalsSet IntervalsSet} instance)
*/
@Override
public IntervalsSet wholeSpace() {
return new IntervalsSet(tolerance);
}
/** {@inheritDoc} */
@Override
public boolean sameOrientationAs(final Hyperplane other) {
return !(direct ^ ((OrientedPoint) other).direct);
}
/** {@inheritDoc}
*/
@Override
public Point project(Point point) {
return location;
}
/** {@inheritDoc}
*/
@Override
public double getTolerance() {
return tolerance;
}
/** Get the hyperplane location on the real line.
* @return the hyperplane location
*/
public Vector1D getLocation() {
return location;
}
/** Check if the hyperplane orientation is direct.
* @return true if the plus side of the hyperplane is towards
* abscissae greater than hyperplane location
*/
public boolean isDirect() {
return direct;
}
/** Revert the instance.
*/
public void revertSelf() {
direct = !direct;
}
}