All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.geometry.euclidean.twod.FieldVector2D Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Hipparchus project under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.hipparchus.geometry.euclidean.twod;

import java.text.NumberFormat;

import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.geometry.LocalizedGeometryFormats;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;

/**
 * This class is a re-implementation of {@link Vector2D} using {@link RealFieldElement}.
 * 

Instance of this class are guaranteed to be immutable.

* @param the type of the field elements * @since 1.6 */ public class FieldVector2D> { /** Abscissa. */ private final T x; /** Ordinate. */ private final T y; /** Simple constructor. * Build a vector from its coordinates * @param x abscissa * @param y ordinate * @see #getX() * @see #getY() */ public FieldVector2D(final T x, final T y) { this.x = x; this.y = y; } /** Simple constructor. * Build a vector from its coordinates * @param v coordinates array * @exception MathIllegalArgumentException if array does not have 2 elements * @see #toArray() */ public FieldVector2D(final T[] v) throws MathIllegalArgumentException { if (v.length != 2) { throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH, v.length, 2); } this.x = v[0]; this.y = v[1]; } /** Multiplicative constructor * Build a vector from another one and a scale factor. * The vector built will be a * u * @param a scale factor * @param u base (unscaled) vector */ public FieldVector2D(final T a, final FieldVector2D u) { this.x = a.multiply(u.x); this.y = a.multiply(u.y); } /** Multiplicative constructor * Build a vector from another one and a scale factor. * The vector built will be a * u * @param a scale factor * @param u base (unscaled) vector */ public FieldVector2D(final T a, final Vector2D u) { this.x = a.multiply(u.getX()); this.y = a.multiply(u.getY()); } /** Multiplicative constructor * Build a vector from another one and a scale factor. * The vector built will be a * u * @param a scale factor * @param u base (unscaled) vector */ public FieldVector2D(final double a, final FieldVector2D u) { this.x = u.x.multiply(a); this.y = u.y.multiply(a); } /** Linear constructor * Build a vector from two other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector */ public FieldVector2D(final T a1, final FieldVector2D u1, final T a2, final FieldVector2D u2) { final T prototype = a1; this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX()); this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY()); } /** Linear constructor. * Build a vector from two other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector */ public FieldVector2D(final T a1, final Vector2D u1, final T a2, final Vector2D u2) { final T prototype = a1; this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2); this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2); } /** Linear constructor. * Build a vector from two other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector */ public FieldVector2D(final double a1, final FieldVector2D u1, final double a2, final FieldVector2D u2) { final T prototype = u1.getX(); this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX()); this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY()); } /** Linear constructor. * Build a vector from three other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector */ public FieldVector2D(final T a1, final FieldVector2D u1, final T a2, final FieldVector2D u2, final T a3, final FieldVector2D u3) { final T prototype = a1; this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX()); this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY()); } /** Linear constructor. * Build a vector from three other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector */ public FieldVector2D(final T a1, final Vector2D u1, final T a2, final Vector2D u2, final T a3, final Vector2D u3) { final T prototype = a1; this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3); this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3); } /** Linear constructor. * Build a vector from three other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector */ public FieldVector2D(final double a1, final FieldVector2D u1, final double a2, final FieldVector2D u2, final double a3, final FieldVector2D u3) { final T prototype = u1.getX(); this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX()); this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY()); } /** Linear constructor. * Build a vector from four other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector * @param a4 fourth scale factor * @param u4 fourth base (unscaled) vector */ public FieldVector2D(final T a1, final FieldVector2D u1, final T a2, final FieldVector2D u2, final T a3, final FieldVector2D u3, final T a4, final FieldVector2D u4) { final T prototype = a1; this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX()); this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY()); } /** Linear constructor. * Build a vector from four other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector * @param a4 fourth scale factor * @param u4 fourth base (unscaled) vector */ public FieldVector2D(final T a1, final Vector2D u1, final T a2, final Vector2D u2, final T a3, final Vector2D u3, final T a4, final Vector2D u4) { final T prototype = a1; this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3, u4.getX(), a4); this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3, u4.getY(), a4); } /** Linear constructor. * Build a vector from four other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector * @param a4 fourth scale factor * @param u4 fourth base (unscaled) vector */ public FieldVector2D(final double a1, final FieldVector2D u1, final double a2, final FieldVector2D u2, final double a3, final FieldVector2D u3, final double a4, final FieldVector2D u4) { final T prototype = u1.getX(); this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX()); this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY()); } /** Build a {@link FieldVector2D} from a {@link Vector2D}. * @param field field for the components * @param v vector to convert */ public FieldVector2D(final Field field, final Vector2D v) { this.x = field.getZero().add(v.getX()); this.y = field.getZero().add(v.getY()); } /** Get null vector (coordinates: 0, 0). * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getZero(final Field field) { return new FieldVector2D<>(field, Vector2D.ZERO); } /** Get first canonical vector (coordinates: 1, 0). * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getPlusI(final Field field) { return new FieldVector2D<>(field, Vector2D.PLUS_I); } /** Get opposite of the first canonical vector (coordinates: -1). * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getMinusI(final Field field) { return new FieldVector2D<>(field, Vector2D.MINUS_I); } /** Get second canonical vector (coordinates: 0, 1). * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getPlusJ(final Field field) { return new FieldVector2D<>(field, Vector2D.PLUS_J); } /** Get opposite of the second canonical vector (coordinates: 0, -1). * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getMinusJ(final Field field) { return new FieldVector2D<>(field, Vector2D.MINUS_J); } /** Get a vector with all coordinates set to NaN. * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getNaN(final Field field) { return new FieldVector2D<>(field, Vector2D.NaN); } /** Get a vector with all coordinates set to positive infinity. * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getPositiveInfinity(final Field field) { return new FieldVector2D<>(field, Vector2D.POSITIVE_INFINITY); } /** Get a vector with all coordinates set to negative infinity. * @param field field for the components * @return a new vector * @param the type of the field elements */ public static > FieldVector2D getNegativeInfinity(final Field field) { return new FieldVector2D<>(field, Vector2D.NEGATIVE_INFINITY); } /** Get the abscissa of the vector. * @return abscissa of the vector * @see #FieldVector2D(RealFieldElement, RealFieldElement) */ public T getX() { return x; } /** Get the ordinate of the vector. * @return ordinate of the vector * @see #FieldVector2D(RealFieldElement, RealFieldElement) */ public T getY() { return y; } /** Get the vector coordinates as a dimension 2 array. * @return vector coordinates * @see #FieldVector2D(RealFieldElement[]) */ public T[] toArray() { final T[] array = MathArrays.buildArray(x.getField(), 2); array[0] = x; array[1] = y; return array; } /** Convert to a constant vector without extra field parts. * @return a constant vector */ public Vector2D toVector2D() { return new Vector2D(x.getReal(), y.getReal()); } /** Get the L1 norm for the vector. * @return L1 norm for the vector */ public T getNorm1() { return x.abs().add(y.abs()); } /** Get the L2 norm for the vector. * @return Euclidean norm for the vector */ public T getNorm() { // there are no cancellation problems here, so we use the straightforward formula return x.multiply(x).add(y.multiply(y)).sqrt(); } /** Get the square of the norm for the vector. * @return square of the Euclidean norm for the vector */ public T getNormSq() { // there are no cancellation problems here, so we use the straightforward formula return x.multiply(x).add(y.multiply(y)); } /** Get the L norm for the vector. * @return L norm for the vector */ public T getNormInf() { return FastMath.max(FastMath.abs(x), FastMath.abs(y)); } /** Add a vector to the instance. * @param v vector to add * @return a new vector */ public FieldVector2D add(final FieldVector2D v) { return new FieldVector2D<>(x.add(v.x), y.add(v.y)); } /** Add a vector to the instance. * @param v vector to add * @return a new vector */ public FieldVector2D add(final Vector2D v) { return new FieldVector2D<>(x.add(v.getX()), y.add(v.getY())); } /** Add a scaled vector to the instance. * @param factor scale factor to apply to v before adding it * @param v vector to add * @return a new vector */ public FieldVector2D add(final T factor, final FieldVector2D v) { return new FieldVector2D<>(x.getField().getOne(), this, factor, v); } /** Add a scaled vector to the instance. * @param factor scale factor to apply to v before adding it * @param v vector to add * @return a new vector */ public FieldVector2D add(final T factor, final Vector2D v) { return new FieldVector2D<>(x.add(factor.multiply(v.getX())), y.add(factor.multiply(v.getY()))); } /** Add a scaled vector to the instance. * @param factor scale factor to apply to v before adding it * @param v vector to add * @return a new vector */ public FieldVector2D add(final double factor, final FieldVector2D v) { return new FieldVector2D<>(1.0, this, factor, v); } /** Add a scaled vector to the instance. * @param factor scale factor to apply to v before adding it * @param v vector to add * @return a new vector */ public FieldVector2D add(final double factor, final Vector2D v) { return new FieldVector2D<>(x.add(factor * v.getX()), y.add(factor * v.getY())); } /** Subtract a vector from the instance. * @param v vector to subtract * @return a new vector */ public FieldVector2D subtract(final FieldVector2D v) { return new FieldVector2D<>(x.subtract(v.x), y.subtract(v.y)); } /** Subtract a vector from the instance. * @param v vector to subtract * @return a new vector */ public FieldVector2D subtract(final Vector2D v) { return new FieldVector2D<>(x.subtract(v.getX()), y.subtract(v.getY())); } /** Subtract a scaled vector from the instance. * @param factor scale factor to apply to v before subtracting it * @param v vector to subtract * @return a new vector */ public FieldVector2D subtract(final T factor, final FieldVector2D v) { return new FieldVector2D<>(x.getField().getOne(), this, factor.negate(), v); } /** Subtract a scaled vector from the instance. * @param factor scale factor to apply to v before subtracting it * @param v vector to subtract * @return a new vector */ public FieldVector2D subtract(final T factor, final Vector2D v) { return new FieldVector2D<>(x.subtract(factor.multiply(v.getX())), y.subtract(factor.multiply(v.getY()))); } /** Subtract a scaled vector from the instance. * @param factor scale factor to apply to v before subtracting it * @param v vector to subtract * @return a new vector */ public FieldVector2D subtract(final double factor, final FieldVector2D v) { return new FieldVector2D<>(1.0, this, -factor, v); } /** Subtract a scaled vector from the instance. * @param factor scale factor to apply to v before subtracting it * @param v vector to subtract * @return a new vector */ public FieldVector2D subtract(final double factor, final Vector2D v) { return new FieldVector2D<>(x.subtract(factor * v.getX()), y.subtract(factor * v.getY())); } /** Get a normalized vector aligned with the instance. * @return a new normalized vector * @exception MathRuntimeException if the norm is zero */ public FieldVector2D normalize() throws MathRuntimeException { final T s = getNorm(); if (s.getReal() == 0) { throw new MathRuntimeException(LocalizedGeometryFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR); } return scalarMultiply(s.reciprocal()); } /** Compute the angular separation between two vectors. *

This method computes the angular separation between two * vectors using the dot product for well separated vectors and the * cross product for almost aligned vectors. This allows to have a * good accuracy in all cases, even for vectors very close to each * other.

* @param v1 first vector * @param v2 second vector * @param the type of the field elements * @return angular separation between v1 and v2 * @exception MathRuntimeException if either vector has a null norm */ public static > T angle(final FieldVector2D v1, final FieldVector2D v2) throws MathRuntimeException { final T normProduct = v1.getNorm().multiply(v2.getNorm()); if (normProduct.getReal() == 0) { throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM); } final T dot = v1.dotProduct(v2); final double threshold = normProduct.getReal() * 0.9999; if (FastMath.abs(dot.getReal()) > threshold) { // the vectors are almost aligned, compute using the sine final T n = FastMath.abs(dot.linearCombination(v1.x, v2.y, v1.y.negate(), v2.x)); if (dot.getReal() >= 0) { return FastMath.asin(n.divide(normProduct)); } return FastMath.asin(n.divide(normProduct)).negate().add(FastMath.PI); } // the vectors are sufficiently separated to use the cosine return FastMath.acos(dot.divide(normProduct)); } /** Compute the angular separation between two vectors. *

This method computes the angular separation between two * vectors using the dot product for well separated vectors and the * cross product for almost aligned vectors. This allows to have a * good accuracy in all cases, even for vectors very close to each * other.

* @param v1 first vector * @param v2 second vector * @param the type of the field elements * @return angular separation between v1 and v2 * @exception MathRuntimeException if either vector has a null norm */ public static > T angle(final FieldVector2D v1, final Vector2D v2) throws MathRuntimeException { final T normProduct = v1.getNorm().multiply(v2.getNorm()); if (normProduct.getReal() == 0) { throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM); } final T dot = v1.dotProduct(v2); final double threshold = normProduct.getReal() * 0.9999; if (FastMath.abs(dot.getReal()) > threshold) { // the vectors are almost aligned, compute using the sine final T n = FastMath.abs(dot.linearCombination(v2.getY(), v1.x, v2.getX(), v1.y.negate())); if (dot.getReal() >= 0) { return FastMath.asin(n.divide(normProduct)); } return FastMath.asin(n.divide(normProduct)).negate().add(FastMath.PI); } // the vectors are sufficiently separated to use the cosine return FastMath.acos(dot.divide(normProduct)); } /** Compute the angular separation between two vectors. *

This method computes the angular separation between two * vectors using the dot product for well separated vectors and the * cross product for almost aligned vectors. This allows to have a * good accuracy in all cases, even for vectors very close to each * other.

* @param v1 first vector * @param v2 second vector * @param the type of the field elements * @return angular separation between v1 and v2 * @exception MathRuntimeException if either vector has a null norm */ public static > T angle(final Vector2D v1, final FieldVector2D v2) throws MathRuntimeException { return angle(v2, v1); } /** Get the opposite of the instance. * @return a new vector which is opposite to the instance */ public FieldVector2D negate() { return new FieldVector2D<>(x.negate(), y.negate()); } /** Multiply the instance by a scalar. * @param a scalar * @return a new vector */ public FieldVector2D scalarMultiply(final T a) { return new FieldVector2D<>(x.multiply(a), y.multiply(a)); } /** Multiply the instance by a scalar. * @param a scalar * @return a new vector */ public FieldVector2D scalarMultiply(final double a) { return new FieldVector2D<>(x.multiply(a), y.multiply(a)); } /** * Returns true if any coordinate of this vector is NaN; false otherwise * @return true if any coordinate of this vector is NaN; false otherwise */ public boolean isNaN() { return Double.isNaN(x.getReal()) || Double.isNaN(y.getReal()); } /** * Returns true if any coordinate of this vector is infinite and none are NaN; * false otherwise * @return true if any coordinate of this vector is infinite and none are NaN; * false otherwise */ public boolean isInfinite() { return !isNaN() && (Double.isInfinite(x.getReal()) || Double.isInfinite(y.getReal())); } /** * Test for the equality of two 2D vectors. *

* If all coordinates of two 2D vectors are exactly the same, and none of their * {@link RealFieldElement#getReal() real part} are NaN, the * two 2D vectors are considered to be equal. *

*

* NaN coordinates are considered to affect globally the vector * and be equals to each other - i.e, if either (or all) real part of the * coordinates of the 3D vector are NaN, the 2D vector is NaN. *

* * @param other Object to test for equality to this * @return true if two 2D vector objects are equal, false if * object is null, not an instance of FieldVector2D, or * not equal to this FieldVector2D instance * */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof FieldVector2D) { @SuppressWarnings("unchecked") final FieldVector2D rhs = (FieldVector2D) other; if (rhs.isNaN()) { return this.isNaN(); } return x.equals(rhs.x) && y.equals(rhs.y); } return false; } /** * Get a hashCode for the 3D vector. *

* All NaN values have the same hash code.

* * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 542; } return 122 * (76 * x.hashCode() + y.hashCode()); } /** Compute the distance between the instance and another vector according to the L1 norm. *

Calling this method is equivalent to calling: * q.subtract(p).getNorm1() except that no intermediate * vector is built

* @param v second vector * @return the distance between the instance and p according to the L1 norm */ public T distance1(final FieldVector2D v) { final T dx = v.x.subtract(x).abs(); final T dy = v.y.subtract(y).abs(); return dx.add(dy); } /** Compute the distance between the instance and another vector according to the L1 norm. *

Calling this method is equivalent to calling: * q.subtract(p).getNorm1() except that no intermediate * vector is built

* @param v second vector * @return the distance between the instance and p according to the L1 norm */ public T distance1(final Vector2D v) { final T dx = x.subtract(v.getX()).abs(); final T dy = y.subtract(v.getY()).abs(); return dx.add(dy); } /** Compute the distance between the instance and another vector according to the L2 norm. *

Calling this method is equivalent to calling: * q.subtract(p).getNorm() except that no intermediate * vector is built

* @param v second vector * @return the distance between the instance and p according to the L2 norm */ public T distance(final FieldVector2D v) { final T dx = v.x.subtract(x); final T dy = v.y.subtract(y); return dx.multiply(dx).add(dy.multiply(dy)).sqrt(); } /** Compute the distance between the instance and another vector according to the L2 norm. *

Calling this method is equivalent to calling: * q.subtract(p).getNorm() except that no intermediate * vector is built

* @param v second vector * @return the distance between the instance and p according to the L2 norm */ public T distance(final Vector2D v) { final T dx = x.subtract(v.getX()); final T dy = y.subtract(v.getY()); return dx.multiply(dx).add(dy.multiply(dy)).sqrt(); } /** Compute the distance between the instance and another vector according to the L norm. *

Calling this method is equivalent to calling: * q.subtract(p).getNormInf() except that no intermediate * vector is built

* @param v second vector * @return the distance between the instance and p according to the L norm */ public T distanceInf(final FieldVector2D v) { final T dx = FastMath.abs(x.subtract(v.x)); final T dy = FastMath.abs(y.subtract(v.y)); return FastMath.max(dx, dy); } /** Compute the distance between the instance and another vector according to the L norm. *

Calling this method is equivalent to calling: * q.subtract(p).getNormInf() except that no intermediate * vector is built

* @param v second vector * @return the distance between the instance and p according to the L norm */ public T distanceInf(final Vector2D v) { final T dx = FastMath.abs(x.subtract(v.getX())); final T dy = FastMath.abs(y.subtract(v.getY())); return FastMath.max(dx, dy); } /** Compute the square of the distance between the instance and another vector. *

Calling this method is equivalent to calling: * q.subtract(p).getNormSq() except that no intermediate * vector is built

* @param v second vector * @return the square of the distance between the instance and p */ public T distanceSq(final FieldVector2D v) { final T dx = v.x.subtract(x); final T dy = v.y.subtract(y); return dx.multiply(dx).add(dy.multiply(dy)); } /** Compute the square of the distance between the instance and another vector. *

Calling this method is equivalent to calling: * q.subtract(p).getNormSq() except that no intermediate * vector is built

* @param v second vector * @return the square of the distance between the instance and p */ public T distanceSq(final Vector2D v) { final T dx = x.subtract(v.getX()); final T dy = y.subtract(v.getY()); return dx.multiply(dx).add(dy.multiply(dy)); } /** Compute the dot-product of the instance and another vector. *

* The implementation uses specific multiplication and addition * algorithms to preserve accuracy and reduce cancellation effects. * It should be very accurate even for nearly orthogonal vectors. *

* @see MathArrays#linearCombination(double, double, double, double, double, double) * @param v second vector * @return the dot product this.v */ public T dotProduct(final FieldVector2D v) { return x.linearCombination(x, v.getX(), y, v.getY()); } /** Compute the dot-product of the instance and another vector. *

* The implementation uses specific multiplication and addition * algorithms to preserve accuracy and reduce cancellation effects. * It should be very accurate even for nearly orthogonal vectors. *

* @see MathArrays#linearCombination(double, double, double, double, double, double) * @param v second vector * @return the dot product this.v */ public T dotProduct(final Vector2D v) { return x.linearCombination(v.getX(), x, v.getY(), y); } /** * Compute the cross-product of the instance and the given points. *

* The cross product can be used to determine the location of a point * with regard to the line formed by (p1, p2) and is calculated as: * \[ * P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) * \] * with \(p3 = (x_3, y_3)\) being this instance. *

* If the result is 0, the points are collinear, i.e. lie on a single straight line L; * if it is positive, this point lies to the left, otherwise to the right of the line * formed by (p1, p2). * * @param p1 first point of the line * @param p2 second point of the line * @return the cross-product * * @see Cross product (Wikipedia) */ public T crossProduct(final FieldVector2D p1, final FieldVector2D p2) { final T x1 = p2.getX().subtract(p1.getX()); final T y1 = getY().subtract(p1.getY()); final T mx2 = p1.getX().subtract(getX()); final T y2 = p2.getY().subtract(p1.getY()); return x1.linearCombination(x1, y1, mx2, y2); } /** * Compute the cross-product of the instance and the given points. *

* The cross product can be used to determine the location of a point * with regard to the line formed by (p1, p2) and is calculated as: * \[ * P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) * \] * with \(p3 = (x_3, y_3)\) being this instance. *

* If the result is 0, the points are collinear, i.e. lie on a single straight line L; * if it is positive, this point lies to the left, otherwise to the right of the line * formed by (p1, p2). * * @param p1 first point of the line * @param p2 second point of the line * @return the cross-product * * @see Cross product (Wikipedia) */ public T crossProduct(final Vector2D p1, final Vector2D p2) { final double x1 = p2.getX() - p1.getX(); final T y1 = getY().subtract(p1.getY()); final T x2 = getX().subtract(p1.getX()); final double y2 = p2.getY() - p1.getY(); return y1.linearCombination(x1, y1, -y2, x2); } /** Compute the distance between two vectors according to the L2 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L2 norm */ public static > T distance1(final FieldVector2D p1, final FieldVector2D p2) { return p1.distance1(p2); } /** Compute the distance between two vectors according to the L2 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L2 norm */ public static > T distance1(final FieldVector2D p1, final Vector2D p2) { return p1.distance1(p2); } /** Compute the distance between two vectors according to the L2 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L2 norm */ public static > T distance1(final Vector2D p1, final FieldVector2D p2) { return p2.distance1(p1); } /** Compute the distance between two vectors according to the L2 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L2 norm */ public static > T distance(final FieldVector2D p1, final FieldVector2D p2) { return p1.distance(p2); } /** Compute the distance between two vectors according to the L2 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L2 norm */ public static > T distance(final FieldVector2D p1, final Vector2D p2) { return p1.distance(p2); } /** Compute the distance between two vectors according to the L2 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L2 norm */ public static > T distance( final Vector2D p1, final FieldVector2D p2) { return p2.distance(p1); } /** Compute the distance between two vectors according to the L norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormInf() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L norm */ public static > T distanceInf(final FieldVector2D p1, final FieldVector2D p2) { return p1.distanceInf(p2); } /** Compute the distance between two vectors according to the L norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormInf() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L norm */ public static > T distanceInf(final FieldVector2D p1, final Vector2D p2) { return p1.distanceInf(p2); } /** Compute the distance between two vectors according to the L norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormInf() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the distance between p1 and p2 according to the L norm */ public static > T distanceInf(final Vector2D p1, final FieldVector2D p2) { return p2.distanceInf(p1); } /** Compute the square of the distance between two vectors. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormSq() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the square of the distance between p1 and p2 */ public static > T distanceSq(final FieldVector2D p1, final FieldVector2D p2) { return p1.distanceSq(p2); } /** Compute the square of the distance between two vectors. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormSq() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the square of the distance between p1 and p2 */ public static > T distanceSq(final FieldVector2D p1, final Vector2D p2) { return p1.distanceSq(p2); } /** Compute the square of the distance between two vectors. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormSq() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @param the type of the field elements * @return the square of the distance between p1 and p2 */ public static > T distanceSq(final Vector2D p1, final FieldVector2D p2) { return p2.distanceSq(p1); } /** Compute the orientation of a triplet of points. * @param p first vector of the triplet * @param q second vector of the triplet * @param r third vector of the triplet * @param the type of the field elements * @return a positive value if (p, q, r) defines a counterclockwise oriented * triangle, a negative value if (p, q, r) defines a clockwise oriented * triangle, and 0 if (p, q, r) are collinear or some points are equal * @since 1.2 */ public static > T orientation(final FieldVector2D p, final FieldVector2D q, final FieldVector2D r) { final T prototype = p.getX(); final T[] a = MathArrays.buildArray(prototype.getField(), 6); a[0] = p.getX(); a[1] = p.getX().negate(); a[2] = q.getX(); a[3] = q.getX().negate(); a[4] = r.getX(); a[5] = r.getX().negate(); final T[] b = MathArrays.buildArray(prototype.getField(), 6); b[0] = q.getY(); b[1] = r.getY(); b[2] = r.getY(); b[3] = p.getY(); b[4] = p.getY(); b[5] = q.getY(); return prototype.linearCombination(a, b); } /** Get a string representation of this vector. * @return a string representation of this vector */ @Override public String toString() { return Vector2DFormat.getVector2DFormat().format(toVector2D()); } /** Get a string representation of this vector. * @param format the custom format for components * @return a string representation of this vector */ public String toString(final NumberFormat format) { return new Vector2DFormat(format).format(toVector2D()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy