org.hipparchus.geometry.euclidean.twod.FieldVector2D Maven / Gradle / Ivy
Show all versions of hipparchus-geometry Show documentation
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.geometry.euclidean.twod;
import java.text.NumberFormat;
import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.geometry.LocalizedGeometryFormats;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
/**
* This class is a re-implementation of {@link Vector2D} using {@link RealFieldElement}.
* Instance of this class are guaranteed to be immutable.
* @param the type of the field elements
* @since 1.6
*/
public class FieldVector2D> {
/** Abscissa. */
private final T x;
/** Ordinate. */
private final T y;
/** Simple constructor.
* Build a vector from its coordinates
* @param x abscissa
* @param y ordinate
* @see #getX()
* @see #getY()
*/
public FieldVector2D(final T x, final T y) {
this.x = x;
this.y = y;
}
/** Simple constructor.
* Build a vector from its coordinates
* @param v coordinates array
* @exception MathIllegalArgumentException if array does not have 2 elements
* @see #toArray()
*/
public FieldVector2D(final T[] v) throws MathIllegalArgumentException {
if (v.length != 2) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
v.length, 2);
}
this.x = v[0];
this.y = v[1];
}
/** Multiplicative constructor
* Build a vector from another one and a scale factor.
* The vector built will be a * u
* @param a scale factor
* @param u base (unscaled) vector
*/
public FieldVector2D(final T a, final FieldVector2D u) {
this.x = a.multiply(u.x);
this.y = a.multiply(u.y);
}
/** Multiplicative constructor
* Build a vector from another one and a scale factor.
* The vector built will be a * u
* @param a scale factor
* @param u base (unscaled) vector
*/
public FieldVector2D(final T a, final Vector2D u) {
this.x = a.multiply(u.getX());
this.y = a.multiply(u.getY());
}
/** Multiplicative constructor
* Build a vector from another one and a scale factor.
* The vector built will be a * u
* @param a scale factor
* @param u base (unscaled) vector
*/
public FieldVector2D(final double a, final FieldVector2D u) {
this.x = u.x.multiply(a);
this.y = u.y.multiply(a);
}
/** Linear constructor
* Build a vector from two other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
*/
public FieldVector2D(final T a1, final FieldVector2D u1, final T a2, final FieldVector2D u2) {
final T prototype = a1;
this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
}
/** Linear constructor.
* Build a vector from two other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
*/
public FieldVector2D(final T a1, final Vector2D u1,
final T a2, final Vector2D u2) {
final T prototype = a1;
this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2);
this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2);
}
/** Linear constructor.
* Build a vector from two other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
*/
public FieldVector2D(final double a1, final FieldVector2D u1,
final double a2, final FieldVector2D u2) {
final T prototype = u1.getX();
this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
}
/** Linear constructor.
* Build a vector from three other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2 + a3 * u3
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
* @param a3 third scale factor
* @param u3 third base (unscaled) vector
*/
public FieldVector2D(final T a1, final FieldVector2D u1,
final T a2, final FieldVector2D u2,
final T a3, final FieldVector2D u3) {
final T prototype = a1;
this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
}
/** Linear constructor.
* Build a vector from three other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2 + a3 * u3
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
* @param a3 third scale factor
* @param u3 third base (unscaled) vector
*/
public FieldVector2D(final T a1, final Vector2D u1,
final T a2, final Vector2D u2,
final T a3, final Vector2D u3) {
final T prototype = a1;
this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3);
this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3);
}
/** Linear constructor.
* Build a vector from three other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2 + a3 * u3
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
* @param a3 third scale factor
* @param u3 third base (unscaled) vector
*/
public FieldVector2D(final double a1, final FieldVector2D u1,
final double a2, final FieldVector2D u2,
final double a3, final FieldVector2D u3) {
final T prototype = u1.getX();
this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
}
/** Linear constructor.
* Build a vector from four other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
* @param a3 third scale factor
* @param u3 third base (unscaled) vector
* @param a4 fourth scale factor
* @param u4 fourth base (unscaled) vector
*/
public FieldVector2D(final T a1, final FieldVector2D u1,
final T a2, final FieldVector2D u2,
final T a3, final FieldVector2D u3,
final T a4, final FieldVector2D u4) {
final T prototype = a1;
this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
}
/** Linear constructor.
* Build a vector from four other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
* @param a3 third scale factor
* @param u3 third base (unscaled) vector
* @param a4 fourth scale factor
* @param u4 fourth base (unscaled) vector
*/
public FieldVector2D(final T a1, final Vector2D u1,
final T a2, final Vector2D u2,
final T a3, final Vector2D u3,
final T a4, final Vector2D u4) {
final T prototype = a1;
this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3, u4.getX(), a4);
this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3, u4.getY(), a4);
}
/** Linear constructor.
* Build a vector from four other ones and corresponding scale factors.
* The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
* @param a1 first scale factor
* @param u1 first base (unscaled) vector
* @param a2 second scale factor
* @param u2 second base (unscaled) vector
* @param a3 third scale factor
* @param u3 third base (unscaled) vector
* @param a4 fourth scale factor
* @param u4 fourth base (unscaled) vector
*/
public FieldVector2D(final double a1, final FieldVector2D u1,
final double a2, final FieldVector2D u2,
final double a3, final FieldVector2D u3,
final double a4, final FieldVector2D u4) {
final T prototype = u1.getX();
this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
}
/** Build a {@link FieldVector2D} from a {@link Vector2D}.
* @param field field for the components
* @param v vector to convert
*/
public FieldVector2D(final Field field, final Vector2D v) {
this.x = field.getZero().add(v.getX());
this.y = field.getZero().add(v.getY());
}
/** Get null vector (coordinates: 0, 0).
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getZero(final Field field) {
return new FieldVector2D<>(field, Vector2D.ZERO);
}
/** Get first canonical vector (coordinates: 1, 0).
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getPlusI(final Field field) {
return new FieldVector2D<>(field, Vector2D.PLUS_I);
}
/** Get opposite of the first canonical vector (coordinates: -1).
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getMinusI(final Field field) {
return new FieldVector2D<>(field, Vector2D.MINUS_I);
}
/** Get second canonical vector (coordinates: 0, 1).
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getPlusJ(final Field field) {
return new FieldVector2D<>(field, Vector2D.PLUS_J);
}
/** Get opposite of the second canonical vector (coordinates: 0, -1).
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getMinusJ(final Field field) {
return new FieldVector2D<>(field, Vector2D.MINUS_J);
}
/** Get a vector with all coordinates set to NaN.
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getNaN(final Field field) {
return new FieldVector2D<>(field, Vector2D.NaN);
}
/** Get a vector with all coordinates set to positive infinity.
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getPositiveInfinity(final Field field) {
return new FieldVector2D<>(field, Vector2D.POSITIVE_INFINITY);
}
/** Get a vector with all coordinates set to negative infinity.
* @param field field for the components
* @return a new vector
* @param the type of the field elements
*/
public static > FieldVector2D getNegativeInfinity(final Field field) {
return new FieldVector2D<>(field, Vector2D.NEGATIVE_INFINITY);
}
/** Get the abscissa of the vector.
* @return abscissa of the vector
* @see #FieldVector2D(RealFieldElement, RealFieldElement)
*/
public T getX() {
return x;
}
/** Get the ordinate of the vector.
* @return ordinate of the vector
* @see #FieldVector2D(RealFieldElement, RealFieldElement)
*/
public T getY() {
return y;
}
/** Get the vector coordinates as a dimension 2 array.
* @return vector coordinates
* @see #FieldVector2D(RealFieldElement[])
*/
public T[] toArray() {
final T[] array = MathArrays.buildArray(x.getField(), 2);
array[0] = x;
array[1] = y;
return array;
}
/** Convert to a constant vector without extra field parts.
* @return a constant vector
*/
public Vector2D toVector2D() {
return new Vector2D(x.getReal(), y.getReal());
}
/** Get the L1 norm for the vector.
* @return L1 norm for the vector
*/
public T getNorm1() {
return x.abs().add(y.abs());
}
/** Get the L2 norm for the vector.
* @return Euclidean norm for the vector
*/
public T getNorm() {
// there are no cancellation problems here, so we use the straightforward formula
return x.multiply(x).add(y.multiply(y)).sqrt();
}
/** Get the square of the norm for the vector.
* @return square of the Euclidean norm for the vector
*/
public T getNormSq() {
// there are no cancellation problems here, so we use the straightforward formula
return x.multiply(x).add(y.multiply(y));
}
/** Get the L∞ norm for the vector.
* @return L∞ norm for the vector
*/
public T getNormInf() {
return FastMath.max(FastMath.abs(x), FastMath.abs(y));
}
/** Add a vector to the instance.
* @param v vector to add
* @return a new vector
*/
public FieldVector2D add(final FieldVector2D v) {
return new FieldVector2D<>(x.add(v.x), y.add(v.y));
}
/** Add a vector to the instance.
* @param v vector to add
* @return a new vector
*/
public FieldVector2D add(final Vector2D v) {
return new FieldVector2D<>(x.add(v.getX()), y.add(v.getY()));
}
/** Add a scaled vector to the instance.
* @param factor scale factor to apply to v before adding it
* @param v vector to add
* @return a new vector
*/
public FieldVector2D add(final T factor, final FieldVector2D v) {
return new FieldVector2D<>(x.getField().getOne(), this, factor, v);
}
/** Add a scaled vector to the instance.
* @param factor scale factor to apply to v before adding it
* @param v vector to add
* @return a new vector
*/
public FieldVector2D add(final T factor, final Vector2D v) {
return new FieldVector2D<>(x.add(factor.multiply(v.getX())),
y.add(factor.multiply(v.getY())));
}
/** Add a scaled vector to the instance.
* @param factor scale factor to apply to v before adding it
* @param v vector to add
* @return a new vector
*/
public FieldVector2D add(final double factor, final FieldVector2D v) {
return new FieldVector2D<>(1.0, this, factor, v);
}
/** Add a scaled vector to the instance.
* @param factor scale factor to apply to v before adding it
* @param v vector to add
* @return a new vector
*/
public FieldVector2D add(final double factor, final Vector2D v) {
return new FieldVector2D<>(x.add(factor * v.getX()),
y.add(factor * v.getY()));
}
/** Subtract a vector from the instance.
* @param v vector to subtract
* @return a new vector
*/
public FieldVector2D subtract(final FieldVector2D v) {
return new FieldVector2D<>(x.subtract(v.x), y.subtract(v.y));
}
/** Subtract a vector from the instance.
* @param v vector to subtract
* @return a new vector
*/
public FieldVector2D subtract(final Vector2D v) {
return new FieldVector2D<>(x.subtract(v.getX()), y.subtract(v.getY()));
}
/** Subtract a scaled vector from the instance.
* @param factor scale factor to apply to v before subtracting it
* @param v vector to subtract
* @return a new vector
*/
public FieldVector2D subtract(final T factor, final FieldVector2D v) {
return new FieldVector2D<>(x.getField().getOne(), this, factor.negate(), v);
}
/** Subtract a scaled vector from the instance.
* @param factor scale factor to apply to v before subtracting it
* @param v vector to subtract
* @return a new vector
*/
public FieldVector2D subtract(final T factor, final Vector2D v) {
return new FieldVector2D<>(x.subtract(factor.multiply(v.getX())),
y.subtract(factor.multiply(v.getY())));
}
/** Subtract a scaled vector from the instance.
* @param factor scale factor to apply to v before subtracting it
* @param v vector to subtract
* @return a new vector
*/
public FieldVector2D subtract(final double factor, final FieldVector2D v) {
return new FieldVector2D<>(1.0, this, -factor, v);
}
/** Subtract a scaled vector from the instance.
* @param factor scale factor to apply to v before subtracting it
* @param v vector to subtract
* @return a new vector
*/
public FieldVector2D subtract(final double factor, final Vector2D v) {
return new FieldVector2D<>(x.subtract(factor * v.getX()),
y.subtract(factor * v.getY()));
}
/** Get a normalized vector aligned with the instance.
* @return a new normalized vector
* @exception MathRuntimeException if the norm is zero
*/
public FieldVector2D normalize() throws MathRuntimeException {
final T s = getNorm();
if (s.getReal() == 0) {
throw new MathRuntimeException(LocalizedGeometryFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
}
return scalarMultiply(s.reciprocal());
}
/** Compute the angular separation between two vectors.
* This method computes the angular separation between two
* vectors using the dot product for well separated vectors and the
* cross product for almost aligned vectors. This allows to have a
* good accuracy in all cases, even for vectors very close to each
* other.
* @param v1 first vector
* @param v2 second vector
* @param the type of the field elements
* @return angular separation between v1 and v2
* @exception MathRuntimeException if either vector has a null norm
*/
public static > T angle(final FieldVector2D v1, final FieldVector2D v2)
throws MathRuntimeException {
final T normProduct = v1.getNorm().multiply(v2.getNorm());
if (normProduct.getReal() == 0) {
throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
}
final T dot = v1.dotProduct(v2);
final double threshold = normProduct.getReal() * 0.9999;
if (FastMath.abs(dot.getReal()) > threshold) {
// the vectors are almost aligned, compute using the sine
final T n = FastMath.abs(dot.linearCombination(v1.x, v2.y, v1.y.negate(), v2.x));
if (dot.getReal() >= 0) {
return FastMath.asin(n.divide(normProduct));
}
return FastMath.asin(n.divide(normProduct)).negate().add(FastMath.PI);
}
// the vectors are sufficiently separated to use the cosine
return FastMath.acos(dot.divide(normProduct));
}
/** Compute the angular separation between two vectors.
* This method computes the angular separation between two
* vectors using the dot product for well separated vectors and the
* cross product for almost aligned vectors. This allows to have a
* good accuracy in all cases, even for vectors very close to each
* other.
* @param v1 first vector
* @param v2 second vector
* @param the type of the field elements
* @return angular separation between v1 and v2
* @exception MathRuntimeException if either vector has a null norm
*/
public static > T angle(final FieldVector2D v1, final Vector2D v2)
throws MathRuntimeException {
final T normProduct = v1.getNorm().multiply(v2.getNorm());
if (normProduct.getReal() == 0) {
throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
}
final T dot = v1.dotProduct(v2);
final double threshold = normProduct.getReal() * 0.9999;
if (FastMath.abs(dot.getReal()) > threshold) {
// the vectors are almost aligned, compute using the sine
final T n = FastMath.abs(dot.linearCombination(v2.getY(), v1.x, v2.getX(), v1.y.negate()));
if (dot.getReal() >= 0) {
return FastMath.asin(n.divide(normProduct));
}
return FastMath.asin(n.divide(normProduct)).negate().add(FastMath.PI);
}
// the vectors are sufficiently separated to use the cosine
return FastMath.acos(dot.divide(normProduct));
}
/** Compute the angular separation between two vectors.
* This method computes the angular separation between two
* vectors using the dot product for well separated vectors and the
* cross product for almost aligned vectors. This allows to have a
* good accuracy in all cases, even for vectors very close to each
* other.
* @param v1 first vector
* @param v2 second vector
* @param the type of the field elements
* @return angular separation between v1 and v2
* @exception MathRuntimeException if either vector has a null norm
*/
public static > T angle(final Vector2D v1, final FieldVector2D v2)
throws MathRuntimeException {
return angle(v2, v1);
}
/** Get the opposite of the instance.
* @return a new vector which is opposite to the instance
*/
public FieldVector2D negate() {
return new FieldVector2D<>(x.negate(), y.negate());
}
/** Multiply the instance by a scalar.
* @param a scalar
* @return a new vector
*/
public FieldVector2D scalarMultiply(final T a) {
return new FieldVector2D<>(x.multiply(a), y.multiply(a));
}
/** Multiply the instance by a scalar.
* @param a scalar
* @return a new vector
*/
public FieldVector2D scalarMultiply(final double a) {
return new FieldVector2D<>(x.multiply(a), y.multiply(a));
}
/**
* Returns true if any coordinate of this vector is NaN; false otherwise
* @return true if any coordinate of this vector is NaN; false otherwise
*/
public boolean isNaN() {
return Double.isNaN(x.getReal()) || Double.isNaN(y.getReal());
}
/**
* Returns true if any coordinate of this vector is infinite and none are NaN;
* false otherwise
* @return true if any coordinate of this vector is infinite and none are NaN;
* false otherwise
*/
public boolean isInfinite() {
return !isNaN() && (Double.isInfinite(x.getReal()) || Double.isInfinite(y.getReal()));
}
/**
* Test for the equality of two 2D vectors.
*
* If all coordinates of two 2D vectors are exactly the same, and none of their
* {@link RealFieldElement#getReal() real part} are NaN
, the
* two 2D vectors are considered to be equal.
*
*
* NaN
coordinates are considered to affect globally the vector
* and be equals to each other - i.e, if either (or all) real part of the
* coordinates of the 3D vector are NaN
, the 2D vector is NaN
.
*
*
* @param other Object to test for equality to this
* @return true if two 2D vector objects are equal, false if
* object is null, not an instance of FieldVector2D, or
* not equal to this FieldVector2D instance
*
*/
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof FieldVector2D) {
@SuppressWarnings("unchecked")
final FieldVector2D rhs = (FieldVector2D) other;
if (rhs.isNaN()) {
return this.isNaN();
}
return x.equals(rhs.x) && y.equals(rhs.y);
}
return false;
}
/**
* Get a hashCode for the 3D vector.
*
* All NaN values have the same hash code.
*
* @return a hash code value for this object
*/
@Override
public int hashCode() {
if (isNaN()) {
return 542;
}
return 122 * (76 * x.hashCode() + y.hashCode());
}
/** Compute the distance between the instance and another vector according to the L1 norm.
* Calling this method is equivalent to calling:
* q.subtract(p).getNorm1()
except that no intermediate
* vector is built
* @param v second vector
* @return the distance between the instance and p according to the L1 norm
*/
public T distance1(final FieldVector2D v) {
final T dx = v.x.subtract(x).abs();
final T dy = v.y.subtract(y).abs();
return dx.add(dy);
}
/** Compute the distance between the instance and another vector according to the L1 norm.
* Calling this method is equivalent to calling:
* q.subtract(p).getNorm1()
except that no intermediate
* vector is built
* @param v second vector
* @return the distance between the instance and p according to the L1 norm
*/
public T distance1(final Vector2D v) {
final T dx = x.subtract(v.getX()).abs();
final T dy = y.subtract(v.getY()).abs();
return dx.add(dy);
}
/** Compute the distance between the instance and another vector according to the L2 norm.
* Calling this method is equivalent to calling:
* q.subtract(p).getNorm()
except that no intermediate
* vector is built
* @param v second vector
* @return the distance between the instance and p according to the L2 norm
*/
public T distance(final FieldVector2D v) {
final T dx = v.x.subtract(x);
final T dy = v.y.subtract(y);
return dx.multiply(dx).add(dy.multiply(dy)).sqrt();
}
/** Compute the distance between the instance and another vector according to the L2 norm.
* Calling this method is equivalent to calling:
* q.subtract(p).getNorm()
except that no intermediate
* vector is built
* @param v second vector
* @return the distance between the instance and p according to the L2 norm
*/
public T distance(final Vector2D v) {
final T dx = x.subtract(v.getX());
final T dy = y.subtract(v.getY());
return dx.multiply(dx).add(dy.multiply(dy)).sqrt();
}
/** Compute the distance between the instance and another vector according to the L∞ norm.
* Calling this method is equivalent to calling:
* q.subtract(p).getNormInf()
except that no intermediate
* vector is built
* @param v second vector
* @return the distance between the instance and p according to the L∞ norm
*/
public T distanceInf(final FieldVector2D v) {
final T dx = FastMath.abs(x.subtract(v.x));
final T dy = FastMath.abs(y.subtract(v.y));
return FastMath.max(dx, dy);
}
/** Compute the distance between the instance and another vector according to the L∞ norm.
* Calling this method is equivalent to calling:
* q.subtract(p).getNormInf()
except that no intermediate
* vector is built
* @param v second vector
* @return the distance between the instance and p according to the L∞ norm
*/
public T distanceInf(final Vector2D v) {
final T dx = FastMath.abs(x.subtract(v.getX()));
final T dy = FastMath.abs(y.subtract(v.getY()));
return FastMath.max(dx, dy);
}
/** Compute the square of the distance between the instance and another vector.
* Calling this method is equivalent to calling:
* q.subtract(p).getNormSq()
except that no intermediate
* vector is built
* @param v second vector
* @return the square of the distance between the instance and p
*/
public T distanceSq(final FieldVector2D v) {
final T dx = v.x.subtract(x);
final T dy = v.y.subtract(y);
return dx.multiply(dx).add(dy.multiply(dy));
}
/** Compute the square of the distance between the instance and another vector.
* Calling this method is equivalent to calling:
* q.subtract(p).getNormSq()
except that no intermediate
* vector is built
* @param v second vector
* @return the square of the distance between the instance and p
*/
public T distanceSq(final Vector2D v) {
final T dx = x.subtract(v.getX());
final T dy = y.subtract(v.getY());
return dx.multiply(dx).add(dy.multiply(dy));
}
/** Compute the dot-product of the instance and another vector.
*
* The implementation uses specific multiplication and addition
* algorithms to preserve accuracy and reduce cancellation effects.
* It should be very accurate even for nearly orthogonal vectors.
*
* @see MathArrays#linearCombination(double, double, double, double, double, double)
* @param v second vector
* @return the dot product this.v
*/
public T dotProduct(final FieldVector2D v) {
return x.linearCombination(x, v.getX(), y, v.getY());
}
/** Compute the dot-product of the instance and another vector.
*
* The implementation uses specific multiplication and addition
* algorithms to preserve accuracy and reduce cancellation effects.
* It should be very accurate even for nearly orthogonal vectors.
*
* @see MathArrays#linearCombination(double, double, double, double, double, double)
* @param v second vector
* @return the dot product this.v
*/
public T dotProduct(final Vector2D v) {
return x.linearCombination(v.getX(), x, v.getY(), y);
}
/**
* Compute the cross-product of the instance and the given points.
*
* The cross product can be used to determine the location of a point
* with regard to the line formed by (p1, p2) and is calculated as:
* \[
* P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)
* \]
* with \(p3 = (x_3, y_3)\) being this instance.
*
* If the result is 0, the points are collinear, i.e. lie on a single straight line L;
* if it is positive, this point lies to the left, otherwise to the right of the line
* formed by (p1, p2).
*
* @param p1 first point of the line
* @param p2 second point of the line
* @return the cross-product
*
* @see Cross product (Wikipedia)
*/
public T crossProduct(final FieldVector2D p1, final FieldVector2D p2) {
final T x1 = p2.getX().subtract(p1.getX());
final T y1 = getY().subtract(p1.getY());
final T mx2 = p1.getX().subtract(getX());
final T y2 = p2.getY().subtract(p1.getY());
return x1.linearCombination(x1, y1, mx2, y2);
}
/**
* Compute the cross-product of the instance and the given points.
*
* The cross product can be used to determine the location of a point
* with regard to the line formed by (p1, p2) and is calculated as:
* \[
* P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)
* \]
* with \(p3 = (x_3, y_3)\) being this instance.
*
* If the result is 0, the points are collinear, i.e. lie on a single straight line L;
* if it is positive, this point lies to the left, otherwise to the right of the line
* formed by (p1, p2).
*
* @param p1 first point of the line
* @param p2 second point of the line
* @return the cross-product
*
* @see Cross product (Wikipedia)
*/
public T crossProduct(final Vector2D p1, final Vector2D p2) {
final double x1 = p2.getX() - p1.getX();
final T y1 = getY().subtract(p1.getY());
final T x2 = getX().subtract(p1.getX());
final double y2 = p2.getY() - p1.getY();
return y1.linearCombination(x1, y1, -y2, x2);
}
/** Compute the distance between two vectors according to the L2 norm.
*
Calling this method is equivalent to calling:
* p1.subtract(p2).getNorm()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L2 norm
*/
public static > T distance1(final FieldVector2D p1, final FieldVector2D p2) {
return p1.distance1(p2);
}
/** Compute the distance between two vectors according to the L2 norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNorm()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L2 norm
*/
public static > T distance1(final FieldVector2D p1, final Vector2D p2) {
return p1.distance1(p2);
}
/** Compute the distance between two vectors according to the L2 norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNorm()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L2 norm
*/
public static > T distance1(final Vector2D p1, final FieldVector2D p2) {
return p2.distance1(p1);
}
/** Compute the distance between two vectors according to the L2 norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNorm()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L2 norm
*/
public static > T distance(final FieldVector2D p1, final FieldVector2D p2) {
return p1.distance(p2);
}
/** Compute the distance between two vectors according to the L2 norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNorm()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L2 norm
*/
public static > T distance(final FieldVector2D p1, final Vector2D p2) {
return p1.distance(p2);
}
/** Compute the distance between two vectors according to the L2 norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNorm()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L2 norm
*/
public static > T distance( final Vector2D p1, final FieldVector2D p2) {
return p2.distance(p1);
}
/** Compute the distance between two vectors according to the L∞ norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNormInf()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L∞ norm
*/
public static > T distanceInf(final FieldVector2D p1, final FieldVector2D p2) {
return p1.distanceInf(p2);
}
/** Compute the distance between two vectors according to the L∞ norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNormInf()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L∞ norm
*/
public static > T distanceInf(final FieldVector2D p1, final Vector2D p2) {
return p1.distanceInf(p2);
}
/** Compute the distance between two vectors according to the L∞ norm.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNormInf()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the distance between p1 and p2 according to the L∞ norm
*/
public static > T distanceInf(final Vector2D p1, final FieldVector2D p2) {
return p2.distanceInf(p1);
}
/** Compute the square of the distance between two vectors.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNormSq()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the square of the distance between p1 and p2
*/
public static > T distanceSq(final FieldVector2D p1, final FieldVector2D p2) {
return p1.distanceSq(p2);
}
/** Compute the square of the distance between two vectors.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNormSq()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the square of the distance between p1 and p2
*/
public static > T distanceSq(final FieldVector2D p1, final Vector2D p2) {
return p1.distanceSq(p2);
}
/** Compute the square of the distance between two vectors.
* Calling this method is equivalent to calling:
* p1.subtract(p2).getNormSq()
except that no intermediate
* vector is built
* @param p1 first vector
* @param p2 second vector
* @param the type of the field elements
* @return the square of the distance between p1 and p2
*/
public static > T distanceSq(final Vector2D p1, final FieldVector2D p2) {
return p2.distanceSq(p1);
}
/** Compute the orientation of a triplet of points.
* @param p first vector of the triplet
* @param q second vector of the triplet
* @param r third vector of the triplet
* @param the type of the field elements
* @return a positive value if (p, q, r) defines a counterclockwise oriented
* triangle, a negative value if (p, q, r) defines a clockwise oriented
* triangle, and 0 if (p, q, r) are collinear or some points are equal
* @since 1.2
*/
public static > T orientation(final FieldVector2D p, final FieldVector2D q, final FieldVector2D r) {
final T prototype = p.getX();
final T[] a = MathArrays.buildArray(prototype.getField(), 6);
a[0] = p.getX();
a[1] = p.getX().negate();
a[2] = q.getX();
a[3] = q.getX().negate();
a[4] = r.getX();
a[5] = r.getX().negate();
final T[] b = MathArrays.buildArray(prototype.getField(), 6);
b[0] = q.getY();
b[1] = r.getY();
b[2] = r.getY();
b[3] = p.getY();
b[4] = p.getY();
b[5] = q.getY();
return prototype.linearCombination(a, b);
}
/** Get a string representation of this vector.
* @return a string representation of this vector
*/
@Override
public String toString() {
return Vector2DFormat.getVector2DFormat().format(toVector2D());
}
/** Get a string representation of this vector.
* @param format the custom format for components
* @return a string representation of this vector
*/
public String toString(final NumberFormat format) {
return new Vector2DFormat(format).format(toVector2D());
}
}