All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.geometry.euclidean.twod.PolygonsSet Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.geometry.euclidean.twod;

import java.util.ArrayList;
import java.util.Collection;
import java.util.IdentityHashMap;
import java.util.List;
import java.util.Map;

import org.hipparchus.geometry.Point;
import org.hipparchus.geometry.euclidean.oned.Euclidean1D;
import org.hipparchus.geometry.euclidean.oned.Interval;
import org.hipparchus.geometry.euclidean.oned.IntervalsSet;
import org.hipparchus.geometry.euclidean.oned.Vector1D;
import org.hipparchus.geometry.partitioning.AbstractRegion;
import org.hipparchus.geometry.partitioning.AbstractSubHyperplane;
import org.hipparchus.geometry.partitioning.BSPTree;
import org.hipparchus.geometry.partitioning.BSPTreeVisitor;
import org.hipparchus.geometry.partitioning.BoundaryAttribute;
import org.hipparchus.geometry.partitioning.Hyperplane;
import org.hipparchus.geometry.partitioning.Side;
import org.hipparchus.geometry.partitioning.SubHyperplane;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.Precision;

/** This class represents a 2D region: a set of polygons.
 */
public class PolygonsSet extends AbstractRegion {

    /** Vertices organized as boundary loops. */
    private Vector2D[][] vertices;

    /** Build a polygons set representing the whole plane.
     * @param tolerance tolerance below which points are considered identical
     */
    public PolygonsSet(final double tolerance) {
        super(tolerance);
    }

    /** Build a polygons set from a BSP tree.
     * 

The leaf nodes of the BSP tree must have a * {@code Boolean} attribute representing the inside status of * the corresponding cell (true for inside cells, false for outside * cells). In order to avoid building too many small objects, it is * recommended to use the predefined constants * {@code Boolean.TRUE} and {@code Boolean.FALSE}

*

* This constructor is aimed at expert use, as building the tree may * be a difficult task. It is not intended for general use and for * performances reasons does not check thoroughly its input, as this would * require walking the full tree each time. Failing to provide a tree with * the proper attributes, will therefore generate problems like * {@link NullPointerException} or {@link ClassCastException} only later on. * This limitation is known and explains why this constructor is for expert * use only. The caller does have the responsibility to provided correct arguments. *

* @param tree inside/outside BSP tree representing the region * @param tolerance tolerance below which points are considered identical */ public PolygonsSet(final BSPTree tree, final double tolerance) { super(tree, tolerance); } /** Build a polygons set from a Boundary REPresentation (B-rep). *

The boundary is provided as a collection of {@link * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the * interior part of the region on its minus side and the exterior on * its plus side.

*

The boundary elements can be in any order, and can form * several non-connected sets (like for example polygons with holes * or a set of disjoint polygons considered as a whole). In * fact, the elements do not even need to be connected together * (their topological connections are not used here). However, if the * boundary does not really separate an inside open from an outside * open (open having here its topological meaning), then subsequent * calls to the {@link * org.hipparchus.geometry.partitioning.Region#checkPoint(org.hipparchus.geometry.Point) * checkPoint} method will not be meaningful anymore.

*

If the boundary is empty, the region will represent the whole * space.

* @param boundary collection of boundary elements, as a * collection of {@link SubHyperplane SubHyperplane} objects * @param tolerance tolerance below which points are considered identical */ public PolygonsSet(final Collection> boundary, final double tolerance) { super(boundary, tolerance); } /** Build a parallellepipedic box. * @param xMin low bound along the x direction * @param xMax high bound along the x direction * @param yMin low bound along the y direction * @param yMax high bound along the y direction * @param tolerance tolerance below which points are considered identical */ public PolygonsSet(final double xMin, final double xMax, final double yMin, final double yMax, final double tolerance) { super(boxBoundary(xMin, xMax, yMin, yMax, tolerance), tolerance); } /** Build a polygon from a simple list of vertices. *

The boundary is provided as a list of points considering to * represent the vertices of a simple loop. The interior part of the * region is on the left side of this path and the exterior is on its * right side.

*

This constructor does not handle polygons with a boundary * forming several disconnected paths (such as polygons with holes).

*

For cases where this simple constructor applies, it is expected to * be numerically more robust than the {@link #PolygonsSet(Collection,double) general * constructor} using {@link SubHyperplane subhyperplanes}.

*

If the list is empty, the region will represent the whole * space.

*

* Polygons with thin pikes or dents are inherently difficult to handle because * they involve lines with almost opposite directions at some vertices. Polygons * whose vertices come from some physical measurement with noise are also * difficult because an edge that should be straight may be broken in lots of * different pieces with almost equal directions. In both cases, computing the * lines intersections is not numerically robust due to the almost 0 or almost * π angle. Such cases need to carefully adjust the {@code hyperplaneThickness} * parameter. A too small value would often lead to completely wrong polygons * with large area wrongly identified as inside or outside. Large values are * often much safer. As a rule of thumb, a value slightly below the size of the * most accurate detail needed is a good value for the {@code hyperplaneThickness} * parameter. *

* @param hyperplaneThickness tolerance below which points are considered to * belong to the hyperplane (which is therefore more a slab) * @param vertices vertices of the simple loop boundary */ public PolygonsSet(final double hyperplaneThickness, final Vector2D ... vertices) { super(verticesToTree(hyperplaneThickness, vertices), hyperplaneThickness); } /** Create a list of hyperplanes representing the boundary of a box. * @param xMin low bound along the x direction * @param xMax high bound along the x direction * @param yMin low bound along the y direction * @param yMax high bound along the y direction * @param tolerance tolerance below which points are considered identical * @return boundary of the box */ private static Line[] boxBoundary(final double xMin, final double xMax, final double yMin, final double yMax, final double tolerance) { if ((xMin >= xMax - tolerance) || (yMin >= yMax - tolerance)) { // too thin box, build an empty polygons set return null; } final Vector2D minMin = new Vector2D(xMin, yMin); final Vector2D minMax = new Vector2D(xMin, yMax); final Vector2D maxMin = new Vector2D(xMax, yMin); final Vector2D maxMax = new Vector2D(xMax, yMax); return new Line[] { new Line(minMin, maxMin, tolerance), new Line(maxMin, maxMax, tolerance), new Line(maxMax, minMax, tolerance), new Line(minMax, minMin, tolerance) }; } /** Build the BSP tree of a polygons set from a simple list of vertices. *

The boundary is provided as a list of points considering to * represent the vertices of a simple loop. The interior part of the * region is on the left side of this path and the exterior is on its * right side.

*

This constructor does not handle polygons with a boundary * forming several disconnected paths (such as polygons with holes).

*

For cases where this simple constructor applies, it is expected to * be numerically more robust than the {@link #PolygonsSet(Collection,double) general * constructor} using {@link SubHyperplane subhyperplanes}.

* @param hyperplaneThickness tolerance below which points are consider to * belong to the hyperplane (which is therefore more a slab) * @param vertices vertices of the simple loop boundary * @return the BSP tree of the input vertices */ private static BSPTree verticesToTree(final double hyperplaneThickness, final Vector2D ... vertices) { final int n = vertices.length; if (n == 0) { // the tree represents the whole space return new BSPTree(Boolean.TRUE); } // build the vertices final Vertex[] vArray = new Vertex[n]; final Map> bindings = new IdentityHashMap<>(n); for (int i = 0; i < n; ++i) { vArray[i] = new Vertex(vertices[i]); bindings.put(vArray[i], new ArrayList<>()); } // build the edges List edges = new ArrayList<>(n); for (int i = 0; i < n; ++i) { // get the endpoints of the edge final Vertex start = vArray[i]; final Vertex end = vArray[(i + 1) % n]; // get the line supporting the edge, taking care not to recreate it if it was // already created earlier due to another edge being aligned with the current one final Line line = supportingLine(start, end, vArray, bindings, hyperplaneThickness); // create the edge and store it edges.add(new Edge(start, end, line)); } // build the tree top-down final BSPTree tree = new BSPTree<>(); insertEdges(hyperplaneThickness, tree, edges); return tree; } /** Get the supporting line for two vertices. * @param start start vertex of an edge being built * @param end end vertex of an edge being built * @param vArray array containing all vertices * @param bindings bindings between vertices and lines * @param hyperplaneThickness tolerance below which points are consider to * belong to the hyperplane (which is therefore more a slab) * @return line bound with both start and end and in the proper orientation */ private static Line supportingLine(final Vertex start, final Vertex end, final Vertex[] vArray, final Map> bindings, final double hyperplaneThickness) { Line toBeReversed = null; for (final Line line1 : bindings.get(start)) { for (final Line line2 : bindings.get(end)) { if (line1 == line2) { // we already know a line to which both vertices belong final double xs = line1.toSubSpace(start.getLocation()).getX(); final double xe = line1.toSubSpace(end.getLocation()).getX(); if (xe >= xs) { // the known line has the proper orientation return line1; } else { toBeReversed = line1; } } } } // we need to create a new circle final Line newLine = (toBeReversed == null) ? new Line(start.getLocation(), end.getLocation(), hyperplaneThickness) : toBeReversed.getReverse(); bindings.get(start).add(newLine); bindings.get(end).add(newLine); // check if another vertex also happens to be on this line for (final Vertex vertex : vArray) { if (vertex != start && vertex != end && FastMath.abs(newLine.getOffset(vertex.getLocation())) <= hyperplaneThickness) { bindings.get(vertex).add(newLine); } } return newLine; } /** Recursively build a tree by inserting cut sub-hyperplanes. * @param hyperplaneThickness tolerance below which points are consider to * belong to the hyperplane (which is therefore more a slab) * @param node current tree node (it is a leaf node at the beginning * of the call) * @param edges list of edges to insert in the cell defined by this node * (excluding edges not belonging to the cell defined by this node) */ private static void insertEdges(final double hyperplaneThickness, final BSPTree node, final List edges) { // find an edge with an hyperplane that can be inserted in the node int index = 0; Edge inserted =null; while (inserted == null && index < edges.size()) { inserted = edges.get(index++); if (inserted.getNode() == null) { if (node.insertCut(inserted.getLine())) { inserted.setNode(node); } else { inserted = null; } } else { inserted = null; } } if (inserted == null) { // no suitable edge was found, the node remains a leaf node // we need to set its inside/outside boolean indicator final BSPTree parent = node.getParent(); if (parent == null || node == parent.getMinus()) { node.setAttribute(Boolean.TRUE); } else { node.setAttribute(Boolean.FALSE); } return; } // we have split the node by inserting an edge as a cut sub-hyperplane // distribute the remaining edges in the two sub-trees final List plusList = new ArrayList<>(); final List minusList = new ArrayList<>(); for (final Edge edge : edges) { if (edge != inserted) { final double startOffset = inserted.getLine().getOffset((Point) edge.getStart().getLocation()); final double endOffset = inserted.getLine().getOffset((Point) edge.getEnd().getLocation()); Side startSide = (FastMath.abs(startOffset) <= hyperplaneThickness) ? Side.HYPER : ((startOffset < 0) ? Side.MINUS : Side.PLUS); Side endSide = (FastMath.abs(endOffset) <= hyperplaneThickness) ? Side.HYPER : ((endOffset < 0) ? Side.MINUS : Side.PLUS); switch (startSide) { case PLUS: if (endSide == Side.MINUS) { // we need to insert a split point on the hyperplane final Vertex splitPoint = edge.split(inserted.getLine()); minusList.add(splitPoint.getOutgoing()); plusList.add(splitPoint.getIncoming()); } else { plusList.add(edge); } break; case MINUS: if (endSide == Side.PLUS) { // we need to insert a split point on the hyperplane final Vertex splitPoint = edge.split(inserted.getLine()); minusList.add(splitPoint.getIncoming()); plusList.add(splitPoint.getOutgoing()); } else { minusList.add(edge); } break; default: if (endSide == Side.PLUS) { plusList.add(edge); } else if (endSide == Side.MINUS) { minusList.add(edge); } break; } } } // recurse through lower levels if (!plusList.isEmpty()) { insertEdges(hyperplaneThickness, node.getPlus(), plusList); } else { node.getPlus().setAttribute(Boolean.FALSE); } if (!minusList.isEmpty()) { insertEdges(hyperplaneThickness, node.getMinus(), minusList); } else { node.getMinus().setAttribute(Boolean.TRUE); } } /** Internal class for holding vertices while they are processed to build a BSP tree. */ private static class Vertex { /** Vertex location. */ private final Vector2D location; /** Incoming edge. */ private Edge incoming; /** Outgoing edge. */ private Edge outgoing; /** Build a non-processed vertex not owned by any node yet. * @param location vertex location */ Vertex(final Vector2D location) { this.location = location; this.incoming = null; this.outgoing = null; } /** Get Vertex location. * @return vertex location */ public Vector2D getLocation() { return location; } /** Set incoming edge. *

* The line supporting the incoming edge is automatically bound * with the instance. *

* @param incoming incoming edge */ public void setIncoming(final Edge incoming) { this.incoming = incoming; } /** Get incoming edge. * @return incoming edge */ public Edge getIncoming() { return incoming; } /** Set outgoing edge. *

* The line supporting the outgoing edge is automatically bound * with the instance. *

* @param outgoing outgoing edge */ public void setOutgoing(final Edge outgoing) { this.outgoing = outgoing; } /** Get outgoing edge. * @return outgoing edge */ public Edge getOutgoing() { return outgoing; } } /** Internal class for holding edges while they are processed to build a BSP tree. */ private static class Edge { /** Start vertex. */ private final Vertex start; /** End vertex. */ private final Vertex end; /** Line supporting the edge. */ private final Line line; /** Node whose cut hyperplane contains this edge. */ private BSPTree node; /** Build an edge not contained in any node yet. * @param start start vertex * @param end end vertex * @param line line supporting the edge */ Edge(final Vertex start, final Vertex end, final Line line) { this.start = start; this.end = end; this.line = line; this.node = null; // connect the vertices back to the edge start.setOutgoing(this); end.setIncoming(this); } /** Get start vertex. * @return start vertex */ public Vertex getStart() { return start; } /** Get end vertex. * @return end vertex */ public Vertex getEnd() { return end; } /** Get the line supporting this edge. * @return line supporting this edge */ public Line getLine() { return line; } /** Set the node whose cut hyperplane contains this edge. * @param node node whose cut hyperplane contains this edge */ public void setNode(final BSPTree node) { this.node = node; } /** Get the node whose cut hyperplane contains this edge. * @return node whose cut hyperplane contains this edge * (null if edge has not yet been inserted into the BSP tree) */ public BSPTree getNode() { return node; } /** Split the edge. *

* Once split, this edge is not referenced anymore by the vertices, * it is replaced by the two half-edges and an intermediate splitting * vertex is introduced to connect these two halves. *

* @param splitLine line splitting the edge in two halves * @return split vertex (its incoming and outgoing edges are the two halves) */ public Vertex split(final Line splitLine) { final Vertex splitVertex = new Vertex(line.intersection(splitLine)); final Edge startHalf = new Edge(start, splitVertex, line); final Edge endHalf = new Edge(splitVertex, end, line); startHalf.node = node; endHalf.node = node; return splitVertex; } } /** {@inheritDoc} */ @Override public PolygonsSet buildNew(final BSPTree tree) { return new PolygonsSet(tree, getTolerance()); } /** {@inheritDoc} */ @Override protected void computeGeometricalProperties() { final Vector2D[][] v = getVertices(); if (v.length == 0) { final BSPTree tree = getTree(false); if (tree.getCut() == null && (Boolean) tree.getAttribute()) { // the instance covers the whole space setSize(Double.POSITIVE_INFINITY); setBarycenter((Point) Vector2D.NaN); } else { setSize(0); setBarycenter((Point) new Vector2D(0, 0)); } } else if (v[0][0] == null) { // there is at least one open-loop: the polygon is infinite setSize(Double.POSITIVE_INFINITY); setBarycenter((Point) Vector2D.NaN); } else { // all loops are closed, we compute some integrals around the shape double sum = 0; double sumX = 0; double sumY = 0; for (Vector2D[] loop : v) { double x1 = loop[loop.length - 1].getX(); double y1 = loop[loop.length - 1].getY(); for (final Vector2D point : loop) { final double x0 = x1; final double y0 = y1; x1 = point.getX(); y1 = point.getY(); final double factor = x0 * y1 - y0 * x1; sum += factor; sumX += factor * (x0 + x1); sumY += factor * (y0 + y1); } } if (sum < 0) { // the polygon as a finite outside surrounded by an infinite inside setSize(Double.POSITIVE_INFINITY); setBarycenter((Point) Vector2D.NaN); } else { setSize(sum / 2); setBarycenter((Point) new Vector2D(sumX / (3 * sum), sumY / (3 * sum))); } } } /** Get the vertices of the polygon. *

The polygon boundary can be represented as an array of loops, * each loop being itself an array of vertices.

*

In order to identify open loops which start and end by * infinite edges, the open loops arrays start with a null point. In * this case, the first non null point and the last point of the * array do not represent real vertices, they are dummy points * intended only to get the direction of the first and last edge. An * open loop consisting of a single infinite line will therefore be * represented by a three elements array with one null point * followed by two dummy points. The open loops are always the first * ones in the loops array.

*

If the polygon has no boundary at all, a zero length loop * array will be returned.

*

All line segments in the various loops have the inside of the * region on their left side and the outside on their right side * when moving in the underlying line direction. This means that * closed loops surrounding finite areas obey the direct * trigonometric orientation.

* @return vertices of the polygon, organized as oriented boundary * loops with the open loops first (the returned value is guaranteed * to be non-null) */ public Vector2D[][] getVertices() { if (vertices == null) { if (getTree(false).getCut() == null) { vertices = new Vector2D[0][]; } else { // build the unconnected segments final SegmentsBuilder visitor = new SegmentsBuilder(getTolerance()); getTree(true).visit(visitor); final List segments = visitor.getSegments(); // connect all segments, using topological criteria first // and using Euclidean distance only as a last resort int pending = segments.size(); pending -= naturalFollowerConnections(segments); if (pending > 0) { pending -= splitEdgeConnections(segments); } if (pending > 0) { pending -= closeVerticesConnections(segments); } // create the segment loops final ArrayList> loops = new ArrayList<>(); for (ConnectableSegment s = getUnprocessed(segments); s != null; s = getUnprocessed(segments)) { final List loop = followLoop(s); if (loop != null) { if (loop.get(0).getStart() == null) { // this is an open loop, we put it on the front loops.add(0, loop); } else { // this is a closed loop, we put it on the back loops.add(loop); } } } // transform the loops in an array of arrays of points vertices = new Vector2D[loops.size()][]; int i = 0; for (final List loop : loops) { if (loop.size() < 2 || (loop.size() == 2 && loop.get(0).getStart() == null && loop.get(1).getEnd() == null)) { // single infinite line final Line line = loop.get(0).getLine(); vertices[i++] = new Vector2D[] { null, line.toSpace((Point) new Vector1D(-Float.MAX_VALUE)), line.toSpace((Point) new Vector1D(+Float.MAX_VALUE)) }; } else if (loop.get(0).getStart() == null) { // open loop with at least one real point final Vector2D[] array = new Vector2D[loop.size() + 2]; int j = 0; for (Segment segment : loop) { if (j == 0) { // null point and first dummy point double x = segment.getLine().toSubSpace((Point) segment.getEnd()).getX(); x -= FastMath.max(1.0, FastMath.abs(x / 2)); array[j++] = null; array[j++] = segment.getLine().toSpace((Point) new Vector1D(x)); } if (j < (array.length - 1)) { // current point array[j++] = segment.getEnd(); } if (j == (array.length - 1)) { // last dummy point double x = segment.getLine().toSubSpace((Point) segment.getStart()).getX(); x += FastMath.max(1.0, FastMath.abs(x / 2)); array[j++] = segment.getLine().toSpace((Point) new Vector1D(x)); } } vertices[i++] = array; } else { final Vector2D[] array = new Vector2D[loop.size()]; int j = 0; for (Segment segment : loop) { array[j++] = segment.getStart(); } vertices[i++] = array; } } } } return vertices.clone(); } /** Connect the segments using only natural follower information. * @param segments segments complete segments list * @return number of connections performed */ private int naturalFollowerConnections(final List segments) { int connected = 0; for (final ConnectableSegment segment : segments) { if (segment.getNext() == null) { final BSPTree node = segment.getNode(); final BSPTree end = segment.getEndNode(); for (final ConnectableSegment candidateNext : segments) { if (candidateNext.getPrevious() == null && candidateNext.getNode() == end && candidateNext.getStartNode() == node) { // connect the two segments segment.setNext(candidateNext); candidateNext.setPrevious(segment); ++connected; break; } } } } return connected; } /** Connect the segments resulting from a line splitting a straight edge. * @param segments segments complete segments list * @return number of connections performed */ private int splitEdgeConnections(final List segments) { int connected = 0; for (final ConnectableSegment segment : segments) { if (segment.getNext() == null) { final Hyperplane hyperplane = segment.getNode().getCut().getHyperplane(); final BSPTree end = segment.getEndNode(); for (final ConnectableSegment candidateNext : segments) { if (candidateNext.getPrevious() == null && candidateNext.getNode().getCut().getHyperplane() == hyperplane && candidateNext.getStartNode() == end) { // connect the two segments segment.setNext(candidateNext); candidateNext.setPrevious(segment); ++connected; break; } } } } return connected; } /** Connect the segments using Euclidean distance. *

* This connection heuristic should be used last, as it relies * only on a fuzzy distance criterion. *

* @param segments segments complete segments list * @return number of connections performed */ private int closeVerticesConnections(final List segments) { int connected = 0; for (final ConnectableSegment segment : segments) { if (segment.getNext() == null && segment.getEnd() != null) { final Vector2D end = segment.getEnd(); ConnectableSegment selectedNext = null; double min = Double.POSITIVE_INFINITY; for (final ConnectableSegment candidateNext : segments) { if (candidateNext.getPrevious() == null && candidateNext.getStart() != null) { final double distance = Vector2D.distance(end, candidateNext.getStart()); if (distance < min) { selectedNext = candidateNext; min = distance; } } } if (min <= getTolerance()) { // connect the two segments segment.setNext(selectedNext); selectedNext.setPrevious(segment); ++connected; } } } return connected; } /** Get first unprocessed segment from a list. * @param segments segments list * @return first segment that has not been processed yet * or null if all segments have been processed */ private ConnectableSegment getUnprocessed(final List segments) { for (final ConnectableSegment segment : segments) { if (!segment.isProcessed()) { return segment; } } return null; } /** Build the loop containing a segment. *

* The segment put in the loop will be marked as processed. *

* @param defining segment used to define the loop * @return loop containing the segment (may be null if the loop is a * degenerated infinitely thin 2 points loop */ private List followLoop(final ConnectableSegment defining) { final List loop = new ArrayList<>(); loop.add(defining); defining.setProcessed(true); // add segments in connection order ConnectableSegment next = defining.getNext(); while (next != defining && next != null) { loop.add(next); next.setProcessed(true); next = next.getNext(); } if (next == null) { // the loop is open and we have found its end, // we need to find its start too ConnectableSegment previous = defining.getPrevious(); while (previous != null) { loop.add(0, previous); previous.setProcessed(true); previous = previous.getPrevious(); } } // filter out spurious vertices filterSpuriousVertices(loop); if (loop.size() == 2 && loop.get(0).getStart() != null) { // this is a degenerated infinitely thin closed loop, we simply ignore it return null; } else { return loop; } } /** Filter out spurious vertices on straight lines (at machine precision). * @param loop segments loop to filter (will be modified in-place) */ private void filterSpuriousVertices(final List loop) { for (int i = 0; i < loop.size(); ++i) { final Segment previous = loop.get(i); int j = (i + 1) % loop.size(); final Segment next = loop.get(j); if (next != null && Precision.equals(previous.getLine().getAngle(), next.getLine().getAngle(), Precision.EPSILON)) { // the vertex between the two edges is a spurious one // replace the two segments by a single one loop.set(j, new Segment(previous.getStart(), next.getEnd(), previous.getLine())); loop.remove(i--); } } } /** Private extension of Segment allowing connection. */ private static class ConnectableSegment extends Segment { /** Node containing segment. */ private final BSPTree node; /** Node whose intersection with current node defines start point. */ private final BSPTree startNode; /** Node whose intersection with current node defines end point. */ private final BSPTree endNode; /** Previous segment. */ private ConnectableSegment previous; /** Next segment. */ private ConnectableSegment next; /** Indicator for completely processed segments. */ private boolean processed; /** Build a segment. * @param start start point of the segment * @param end end point of the segment * @param line line containing the segment * @param node node containing the segment * @param startNode node whose intersection with current node defines start point * @param endNode node whose intersection with current node defines end point */ ConnectableSegment(final Vector2D start, final Vector2D end, final Line line, final BSPTree node, final BSPTree startNode, final BSPTree endNode) { super(start, end, line); this.node = node; this.startNode = startNode; this.endNode = endNode; this.previous = null; this.next = null; this.processed = false; } /** Get the node containing segment. * @return node containing segment */ public BSPTree getNode() { return node; } /** Get the node whose intersection with current node defines start point. * @return node whose intersection with current node defines start point */ public BSPTree getStartNode() { return startNode; } /** Get the node whose intersection with current node defines end point. * @return node whose intersection with current node defines end point */ public BSPTree getEndNode() { return endNode; } /** Get the previous segment. * @return previous segment */ public ConnectableSegment getPrevious() { return previous; } /** Set the previous segment. * @param previous previous segment */ public void setPrevious(final ConnectableSegment previous) { this.previous = previous; } /** Get the next segment. * @return next segment */ public ConnectableSegment getNext() { return next; } /** Set the next segment. * @param next previous segment */ public void setNext(final ConnectableSegment next) { this.next = next; } /** Set the processed flag. * @param processed processed flag to set */ public void setProcessed(final boolean processed) { this.processed = processed; } /** Check if the segment has been processed. * @return true if the segment has been processed */ public boolean isProcessed() { return processed; } } /** Visitor building segments. */ private static class SegmentsBuilder implements BSPTreeVisitor { /** Tolerance for close nodes connection. */ private final double tolerance; /** Built segments. */ private final List segments; /** Simple constructor. * @param tolerance tolerance for close nodes connection */ SegmentsBuilder(final double tolerance) { this.tolerance = tolerance; this.segments = new ArrayList<>(); } /** {@inheritDoc} */ @Override public Order visitOrder(final BSPTree node) { return Order.MINUS_SUB_PLUS; } /** {@inheritDoc} */ @Override public void visitInternalNode(final BSPTree node) { @SuppressWarnings("unchecked") final BoundaryAttribute attribute = (BoundaryAttribute) node.getAttribute(); final Iterable> splitters = attribute.getSplitters(); if (attribute.getPlusOutside() != null) { addContribution(attribute.getPlusOutside(), node, splitters, false); } if (attribute.getPlusInside() != null) { addContribution(attribute.getPlusInside(), node, splitters, true); } } /** {@inheritDoc} */ @Override public void visitLeafNode(final BSPTree node) { } /** Add the contribution of a boundary facet. * @param sub boundary facet * @param node node containing segment * @param splitters splitters for the boundary facet * @param reversed if true, the facet has the inside on its plus side */ private void addContribution(final SubHyperplane sub, final BSPTree node, final Iterable> splitters, final boolean reversed) { @SuppressWarnings("unchecked") final AbstractSubHyperplane absSub = (AbstractSubHyperplane) sub; final Line line = (Line) sub.getHyperplane(); final List intervals = ((IntervalsSet) absSub.getRemainingRegion()).asList(); for (final Interval i : intervals) { // find the 2D points final Vector2D startV = Double.isInfinite(i.getInf()) ? null : (Vector2D) line.toSpace((Point) new Vector1D(i.getInf())); final Vector2D endV = Double.isInfinite(i.getSup()) ? null : (Vector2D) line.toSpace((Point) new Vector1D(i.getSup())); // recover the connectivity information final BSPTree startN = selectClosest(startV, splitters); final BSPTree endN = selectClosest(endV, splitters); if (reversed) { segments.add(new ConnectableSegment(endV, startV, line.getReverse(), node, endN, startN)); } else { segments.add(new ConnectableSegment(startV, endV, line, node, startN, endN)); } } } /** Select the node whose cut sub-hyperplane is closest to specified point. * @param point reference point * @param candidates candidate nodes * @return node closest to point, or null if no node is closer than tolerance */ private BSPTree selectClosest(final Vector2D point, final Iterable> candidates) { if (point == null) { return null; } BSPTree selected = null; double min = Double.POSITIVE_INFINITY; for (final BSPTree node : candidates) { final double distance = FastMath.abs(node.getCut().getHyperplane().getOffset(point)); if (distance < min) { selected = node; min = distance; } } return min <= tolerance ? selected : null; } /** Get the segments. * @return built segments */ public List getSegments() { return segments; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy