All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.geometry.euclidean.twod.Vector2D Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.geometry.euclidean.twod;

import java.text.NumberFormat;

import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.geometry.LocalizedGeometryFormats;
import org.hipparchus.geometry.Point;
import org.hipparchus.geometry.Space;
import org.hipparchus.geometry.Vector;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.MathUtils;

/** This class represents a 2D vector.
 * 

Instances of this class are guaranteed to be immutable.

*/ public class Vector2D implements Vector { /** Origin (coordinates: 0, 0). */ public static final Vector2D ZERO = new Vector2D(0, 0); /** First canonical vector (coordinates: 1, 0). * @since 1.6 */ public static final Vector2D PLUS_I = new Vector2D(1, 0); /** Opposite of the first canonical vector (coordinates: -1, 0). * @since 1.6 */ public static final Vector2D MINUS_I = new Vector2D(-1, 0); /** Second canonical vector (coordinates: 0, 1). * @since 1.6 */ public static final Vector2D PLUS_J = new Vector2D(0, 1); /** Opposite of the second canonical vector (coordinates: 0, -1). * @since 1.6 */ public static final Vector2D MINUS_J = new Vector2D(0, -1); // CHECKSTYLE: stop ConstantName /** A vector with all coordinates set to NaN. */ public static final Vector2D NaN = new Vector2D(Double.NaN, Double.NaN); // CHECKSTYLE: resume ConstantName /** A vector with all coordinates set to positive infinity. */ public static final Vector2D POSITIVE_INFINITY = new Vector2D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); /** A vector with all coordinates set to negative infinity. */ public static final Vector2D NEGATIVE_INFINITY = new Vector2D(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY); /** Serializable UID. */ private static final long serialVersionUID = 266938651998679754L; /** Abscissa. */ private final double x; /** Ordinate. */ private final double y; /** Simple constructor. * Build a vector from its coordinates * @param x abscissa * @param y ordinate * @see #getX() * @see #getY() */ public Vector2D(double x, double y) { this.x = x; this.y = y; } /** Simple constructor. * Build a vector from its coordinates * @param v coordinates array * @exception MathIllegalArgumentException if array does not have 2 elements * @see #toArray() */ public Vector2D(double[] v) throws MathIllegalArgumentException { if (v.length != 2) { throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH, v.length, 2); } this.x = v[0]; this.y = v[1]; } /** Multiplicative constructor * Build a vector from another one and a scale factor. * The vector built will be a * u * @param a scale factor * @param u base (unscaled) vector */ public Vector2D(double a, Vector2D u) { this.x = a * u.x; this.y = a * u.y; } /** Linear constructor * Build a vector from two other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector */ public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2) { this.x = a1 * u1.x + a2 * u2.x; this.y = a1 * u1.y + a2 * u2.y; } /** Linear constructor * Build a vector from three other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector */ public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2, double a3, Vector2D u3) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x; this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y; } /** Linear constructor * Build a vector from four other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector * @param a4 fourth scale factor * @param u4 fourth base (unscaled) vector */ public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2, double a3, Vector2D u3, double a4, Vector2D u4) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x; this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y; } /** Get the abscissa of the vector. * @return abscissa of the vector * @see #Vector2D(double, double) */ public double getX() { return x; } /** Get the ordinate of the vector. * @return ordinate of the vector * @see #Vector2D(double, double) */ public double getY() { return y; } /** Get the vector coordinates as a dimension 2 array. * @return vector coordinates * @see #Vector2D(double[]) */ public double[] toArray() { return new double[] { x, y }; } /** {@inheritDoc} */ @Override public Space getSpace() { return Euclidean2D.getInstance(); } /** {@inheritDoc} */ @Override public Vector2D getZero() { return ZERO; } /** {@inheritDoc} */ @Override public double getNorm1() { return FastMath.abs(x) + FastMath.abs(y); } /** {@inheritDoc} */ @Override public double getNorm() { return FastMath.sqrt (x * x + y * y); } /** {@inheritDoc} */ @Override public double getNormSq() { return x * x + y * y; } /** {@inheritDoc} */ @Override public double getNormInf() { return FastMath.max(FastMath.abs(x), FastMath.abs(y)); } /** {@inheritDoc} */ @Override public Vector2D add(Vector v) { Vector2D v2 = (Vector2D) v; return new Vector2D(x + v2.getX(), y + v2.getY()); } /** {@inheritDoc} */ @Override public Vector2D add(double factor, Vector v) { Vector2D v2 = (Vector2D) v; return new Vector2D(x + factor * v2.getX(), y + factor * v2.getY()); } /** {@inheritDoc} */ @Override public Vector2D subtract(Vector p) { Vector2D p3 = (Vector2D) p; return new Vector2D(x - p3.x, y - p3.y); } /** {@inheritDoc} */ @Override public Vector2D subtract(double factor, Vector v) { Vector2D v2 = (Vector2D) v; return new Vector2D(x - factor * v2.getX(), y - factor * v2.getY()); } /** {@inheritDoc} */ @Override public Vector2D normalize() throws MathRuntimeException { double s = getNorm(); if (s == 0) { throw new MathRuntimeException(LocalizedGeometryFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR); } return scalarMultiply(1 / s); } /** Compute the angular separation between two vectors. *

This method computes the angular separation between two * vectors using the dot product for well separated vectors and the * cross product for almost aligned vectors. This allows to have a * good accuracy in all cases, even for vectors very close to each * other.

* @param v1 first vector * @param v2 second vector * @return angular separation between v1 and v2 * @exception MathRuntimeException if either vector has a null norm */ public static double angle(Vector2D v1, Vector2D v2) throws MathRuntimeException { double normProduct = v1.getNorm() * v2.getNorm(); if (normProduct == 0) { throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM); } double dot = v1.dotProduct(v2); double threshold = normProduct * 0.9999; if (FastMath.abs(dot) > threshold) { // the vectors are almost aligned, compute using the sine final double n = FastMath.abs(MathArrays.linearCombination(v1.x, v2.y, -v1.y, v2.x)); if (dot >= 0) { return FastMath.asin(n / normProduct); } return FastMath.PI - FastMath.asin(n / normProduct); } // the vectors are sufficiently separated to use the cosine return FastMath.acos(dot / normProduct); } /** {@inheritDoc} */ @Override public Vector2D negate() { return new Vector2D(-x, -y); } /** {@inheritDoc} */ @Override public Vector2D scalarMultiply(double a) { return new Vector2D(a * x, a * y); } /** {@inheritDoc} */ @Override public boolean isNaN() { return Double.isNaN(x) || Double.isNaN(y); } /** {@inheritDoc} */ @Override public boolean isInfinite() { return !isNaN() && (Double.isInfinite(x) || Double.isInfinite(y)); } /** {@inheritDoc} */ @Override public double distance1(Vector p) { Vector2D p3 = (Vector2D) p; final double dx = FastMath.abs(p3.x - x); final double dy = FastMath.abs(p3.y - y); return dx + dy; } /** {@inheritDoc} */ @Override public double distance(Point p) { Vector2D p3 = (Vector2D) p; final double dx = p3.x - x; final double dy = p3.y - y; return FastMath.sqrt(dx * dx + dy * dy); } /** {@inheritDoc} */ @Override public double distanceInf(Vector p) { Vector2D p3 = (Vector2D) p; final double dx = FastMath.abs(p3.x - x); final double dy = FastMath.abs(p3.y - y); return FastMath.max(dx, dy); } /** {@inheritDoc} */ @Override public double distanceSq(Vector p) { Vector2D p3 = (Vector2D) p; final double dx = p3.x - x; final double dy = p3.y - y; return dx * dx + dy * dy; } /** {@inheritDoc} */ @Override public double dotProduct(final Vector v) { final Vector2D v2 = (Vector2D) v; return MathArrays.linearCombination(x, v2.x, y, v2.y); } /** * Compute the cross-product of the instance and the given points. *

* The cross product can be used to determine the location of a point * with regard to the line formed by (p1, p2) and is calculated as: * \[ * P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) * \] * with \(p3 = (x_3, y_3)\) being this instance. *

* If the result is 0, the points are collinear, i.e. lie on a single straight line L; * if it is positive, this point lies to the left, otherwise to the right of the line * formed by (p1, p2). * * @param p1 first point of the line * @param p2 second point of the line * @return the cross-product * * @see Cross product (Wikipedia) */ public double crossProduct(final Vector2D p1, final Vector2D p2) { final double x1 = p2.getX() - p1.getX(); final double y1 = getY() - p1.getY(); final double x2 = getX() - p1.getX(); final double y2 = p2.getY() - p1.getY(); return MathArrays.linearCombination(x1, y1, -x2, y2); } /** Compute the distance between two vectors according to the L1 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm1() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @return the distance between p1 and p2 according to the L1 norm * @since 1.6 */ public static double distance1(Vector2D p1, Vector2D p2) { return p1.distance1(p2); } /** Compute the distance between two vectors according to the L2 norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNorm() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @return the distance between p1 and p2 according to the L2 norm */ public static double distance(Vector2D p1, Vector2D p2) { return p1.distance(p2); } /** Compute the distance between two vectors according to the L norm. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormInf() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @return the distance between p1 and p2 according to the L norm */ public static double distanceInf(Vector2D p1, Vector2D p2) { return p1.distanceInf(p2); } /** Compute the square of the distance between two vectors. *

Calling this method is equivalent to calling: * p1.subtract(p2).getNormSq() except that no intermediate * vector is built

* @param p1 first vector * @param p2 second vector * @return the square of the distance between p1 and p2 */ public static double distanceSq(Vector2D p1, Vector2D p2) { return p1.distanceSq(p2); } /** Compute the orientation of a triplet of points. * @param p first vector of the triplet * @param q second vector of the triplet * @param r third vector of the triplet * @return a positive value if (p, q, r) defines a counterclockwise oriented * triangle, a negative value if (p, q, r) defines a clockwise oriented * triangle, and 0 if (p, q, r) are collinear or some points are equal * @since 1.2 */ public static double orientation(final Vector2D p, final Vector2D q, final Vector2D r) { return MathArrays.linearCombination(new double[] { p.getX(), -p.getX(), q.getX(), -q.getX(), r.getX(), -r.getX() }, new double[] { q.getY(), r.getY(), r.getY(), p.getY(), p.getY(), q.getY() }); } /** * Test for the equality of two 2D vectors. *

* If all coordinates of two 2D vectors are exactly the same, and none are * Double.NaN, the two 2D vectors are considered to be equal. *

*

* NaN coordinates are considered to affect globally the vector * and be equals to each other - i.e, if either (or all) coordinates of the * 2D vector are equal to Double.NaN, the 2D vector is equal to * {@link #NaN}. *

* * @param other Object to test for equality to this * @return true if two 2D vector objects are equal, false if * object is null, not an instance of Vector2D, or * not equal to this Vector2D instance * */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof Vector2D) { final Vector2D rhs = (Vector2D)other; if (rhs.isNaN()) { return this.isNaN(); } return (x == rhs.x) && (y == rhs.y); } return false; } /** * Get a hashCode for the 2D vector. *

* All NaN values have the same hash code.

* * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 542; } return 122 * (76 * MathUtils.hash(x) + MathUtils.hash(y)); } /** Get a string representation of this vector. * @return a string representation of this vector */ @Override public String toString() { return Vector2DFormat.getVector2DFormat().format(this); } /** {@inheritDoc} */ @Override public String toString(final NumberFormat format) { return new Vector2DFormat(format).format(this); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy