org.hipparchus.geometry.spherical.oned.ArcsSet Maven / Gradle / Ivy
Show all versions of hipparchus-geometry Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.geometry.spherical.oned;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.geometry.LocalizedGeometryFormats;
import org.hipparchus.geometry.Point;
import org.hipparchus.geometry.partitioning.AbstractRegion;
import org.hipparchus.geometry.partitioning.BSPTree;
import org.hipparchus.geometry.partitioning.BoundaryProjection;
import org.hipparchus.geometry.partitioning.Side;
import org.hipparchus.geometry.partitioning.SubHyperplane;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.hipparchus.util.Precision;
/** This class represents a region of a circle: a set of arcs.
*
* Note that due to the wrapping around \(2 \pi\), barycenter is
* ill-defined here. It was defined only in order to fulfill
* the requirements of the {@link
* org.hipparchus.geometry.partitioning.Region Region}
* interface, but its use is discouraged.
*
*/
public class ArcsSet extends AbstractRegion implements Iterable {
/** Build an arcs set representing the whole circle.
* @param tolerance tolerance below which close sub-arcs are merged together
* @exception MathIllegalArgumentException if tolerance is smaller than {@link Sphere1D#SMALLEST_TOLERANCE}
*/
public ArcsSet(final double tolerance)
throws MathIllegalArgumentException {
super(tolerance);
Sphere1D.checkTolerance(tolerance);
}
/** Build an arcs set corresponding to a single arc.
*
* If either {@code lower} is equals to {@code upper} or
* the interval exceeds \( 2 \pi \), the arc is considered
* to be the full circle and its initial defining boundaries
* will be forgotten. {@code lower} is not allowed to be greater
* than {@code upper} (an exception is thrown in this case).
*
* @param lower lower bound of the arc
* @param upper upper bound of the arc
* @param tolerance tolerance below which close sub-arcs are merged together
* @exception MathIllegalArgumentException if lower is greater than upper
* or tolerance is smaller than {@link Sphere1D#SMALLEST_TOLERANCE}
*/
public ArcsSet(final double lower, final double upper, final double tolerance)
throws MathIllegalArgumentException {
super(buildTree(lower, upper, tolerance), tolerance);
Sphere1D.checkTolerance(tolerance);
}
/** Build an arcs set from an inside/outside BSP tree.
* The leaf nodes of the BSP tree must have a
* {@code Boolean} attribute representing the inside status of
* the corresponding cell (true for inside cells, false for outside
* cells). In order to avoid building too many small objects, it is
* recommended to use the predefined constants
* {@code Boolean.TRUE} and {@code Boolean.FALSE}
* @param tree inside/outside BSP tree representing the arcs set
* @param tolerance tolerance below which close sub-arcs are merged together
* @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not
* consistent across the \( 0, 2 \pi \) crossing
* @exception MathIllegalArgumentException if tolerance is smaller than {@link Sphere1D#SMALLEST_TOLERANCE}
*/
public ArcsSet(final BSPTree tree, final double tolerance)
throws InconsistentStateAt2PiWrapping, MathIllegalArgumentException {
super(tree, tolerance);
Sphere1D.checkTolerance(tolerance);
check2PiConsistency();
}
/** Build an arcs set from a Boundary REPresentation (B-rep).
* The boundary is provided as a collection of {@link
* SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
* interior part of the region on its minus side and the exterior on
* its plus side.
* The boundary elements can be in any order, and can form
* several non-connected sets (like for example polygons with holes
* or a set of disjoints polyhedrons considered as a whole). In
* fact, the elements do not even need to be connected together
* (their topological connections are not used here). However, if the
* boundary does not really separate an inside open from an outside
* open (open having here its topological meaning), then subsequent
* calls to the {@link
* org.hipparchus.geometry.partitioning.Region#checkPoint(org.hipparchus.geometry.Point)
* checkPoint} method will not be meaningful anymore.
* If the boundary is empty, the region will represent the whole
* space.
* @param boundary collection of boundary elements
* @param tolerance tolerance below which close sub-arcs are merged together
* @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not
* consistent across the \( 0, 2 \pi \) crossing
* @exception MathIllegalArgumentException if tolerance is smaller than {@link Sphere1D#SMALLEST_TOLERANCE}
*/
public ArcsSet(final Collection> boundary, final double tolerance)
throws InconsistentStateAt2PiWrapping, MathIllegalArgumentException {
super(boundary, tolerance);
Sphere1D.checkTolerance(tolerance);
check2PiConsistency();
}
/** Build an inside/outside tree representing a single arc.
* @param lower lower angular bound of the arc
* @param upper upper angular bound of the arc
* @param tolerance tolerance below which close sub-arcs are merged together
* @return the built tree
* @exception MathIllegalArgumentException if lower is greater than upper
* or tolerance is smaller than {@link Sphere1D#SMALLEST_TOLERANCE}
*/
private static BSPTree buildTree(final double lower, final double upper,
final double tolerance)
throws MathIllegalArgumentException {
Sphere1D.checkTolerance(tolerance);
if (Precision.equals(lower, upper, 0) || (upper - lower) >= MathUtils.TWO_PI) {
// the tree must cover the whole circle
return new BSPTree(Boolean.TRUE);
} else if (lower > upper) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.ENDPOINTS_NOT_AN_INTERVAL,
lower, upper, true);
}
// this is a regular arc, covering only part of the circle
final double normalizedLower = MathUtils.normalizeAngle(lower, FastMath.PI);
final double normalizedUpper = normalizedLower + (upper - lower);
final SubHyperplane lowerCut =
new LimitAngle(new S1Point(normalizedLower), false, tolerance).wholeHyperplane();
if (normalizedUpper <= MathUtils.TWO_PI) {
// simple arc starting after 0 and ending before 2 \pi
final SubHyperplane upperCut =
new LimitAngle(new S1Point(normalizedUpper), true, tolerance).wholeHyperplane();
return new BSPTree(lowerCut,
new BSPTree(Boolean.FALSE),
new BSPTree(upperCut,
new BSPTree(Boolean.FALSE),
new BSPTree(Boolean.TRUE),
null),
null);
} else {
// arc wrapping around 2 \pi
final SubHyperplane upperCut =
new LimitAngle(new S1Point(normalizedUpper - MathUtils.TWO_PI), true, tolerance).wholeHyperplane();
return new BSPTree(lowerCut,
new BSPTree(upperCut,
new BSPTree(Boolean.FALSE),
new BSPTree(Boolean.TRUE),
null),
new BSPTree(Boolean.TRUE),
null);
}
}
/** Check consistency.
* @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not
* consistent across the \( 0, 2 \pi \) crossing
*/
private void check2PiConsistency() throws InconsistentStateAt2PiWrapping {
// start search at the tree root
BSPTree root = getTree(false);
if (root.getCut() == null) {
return;
}
// find the inside/outside state before the smallest internal node
final Boolean stateBefore = (Boolean) getFirstLeaf(root).getAttribute();
// find the inside/outside state after the largest internal node
final Boolean stateAfter = (Boolean) getLastLeaf(root).getAttribute();
if (stateBefore ^ stateAfter) {
throw new InconsistentStateAt2PiWrapping();
}
}
/** Get the first leaf node of a tree.
* @param root tree root
* @return first leaf node (i.e. node corresponding to the region just after 0.0 radians)
*/
private BSPTree getFirstLeaf(final BSPTree root) {
if (root.getCut() == null) {
return root;
}
// find the smallest internal node
BSPTree smallest = null;
for (BSPTree n = root; n != null; n = previousInternalNode(n)) {
smallest = n;
}
return leafBefore(smallest);
}
/** Get the last leaf node of a tree.
* @param root tree root
* @return last leaf node (i.e. node corresponding to the region just before \( 2 \pi \) radians)
*/
private BSPTree getLastLeaf(final BSPTree root) {
if (root.getCut() == null) {
return root;
}
// find the largest internal node
BSPTree largest = null;
for (BSPTree n = root; n != null; n = nextInternalNode(n)) {
largest = n;
}
return leafAfter(largest);
}
/** Get the node corresponding to the first arc start.
* @return smallest internal node (i.e. first after 0.0 radians, in trigonometric direction),
* or null if there are no internal nodes (i.e. the set is either empty or covers the full circle)
*/
private BSPTree getFirstArcStart() {
// start search at the tree root
BSPTree node = getTree(false);
if (node.getCut() == null) {
return null;
}
// walk tree until we find the smallest internal node
node = getFirstLeaf(node).getParent();
// walk tree until we find an arc start
while (node != null && !isArcStart(node)) {
node = nextInternalNode(node);
}
return node;
}
/** Check if an internal node corresponds to the start angle of an arc.
* @param node internal node to check
* @return true if the node corresponds to the start angle of an arc
*/
private boolean isArcStart(final BSPTree node) {
if ((Boolean) leafBefore(node).getAttribute()) {
// it has an inside cell before it, it may end an arc but not start it
return false;
}
if (!(Boolean) leafAfter(node).getAttribute()) {
// it has an outside cell after it, it is a dummy cut away from real arcs
return false;
}
// the cell has an outside before and an inside after it
// it is the start of an arc
return true;
}
/** Check if an internal node corresponds to the end angle of an arc.
* @param node internal node to check
* @return true if the node corresponds to the end angle of an arc
*/
private boolean isArcEnd(final BSPTree node) {
if (!(Boolean) leafBefore(node).getAttribute()) {
// it has an outside cell before it, it may start an arc but not end it
return false;
}
if ((Boolean) leafAfter(node).getAttribute()) {
// it has an inside cell after it, it is a dummy cut in the middle of an arc
return false;
}
// the cell has an inside before and an outside after it
// it is the end of an arc
return true;
}
/** Get the next internal node.
* @param node current internal node
* @return next internal node in trigonometric order, or null
* if this is the last internal node
*/
private BSPTree nextInternalNode(BSPTree node) {
if (childAfter(node).getCut() != null) {
// the next node is in the sub-tree
return leafAfter(node).getParent();
}
// there is nothing left deeper in the tree, we backtrack
while (isAfterParent(node)) {
node = node.getParent();
}
return node.getParent();
}
/** Get the previous internal node.
* @param node current internal node
* @return previous internal node in trigonometric order, or null
* if this is the first internal node
*/
private BSPTree previousInternalNode(BSPTree node) {
if (childBefore(node).getCut() != null) {
// the next node is in the sub-tree
return leafBefore(node).getParent();
}
// there is nothing left deeper in the tree, we backtrack
while (isBeforeParent(node)) {
node = node.getParent();
}
return node.getParent();
}
/** Find the leaf node just before an internal node.
* @param node internal node at which the sub-tree starts
* @return leaf node just before the internal node
*/
private BSPTree leafBefore(BSPTree node) {
node = childBefore(node);
while (node.getCut() != null) {
node = childAfter(node);
}
return node;
}
/** Find the leaf node just after an internal node.
* @param node internal node at which the sub-tree starts
* @return leaf node just after the internal node
*/
private BSPTree leafAfter(BSPTree node) {
node = childAfter(node);
while (node.getCut() != null) {
node = childBefore(node);
}
return node;
}
/** Check if a node is the child before its parent in trigonometric order.
* @param node child node considered
* @return true is the node has a parent end is before it in trigonometric order
*/
private boolean isBeforeParent(final BSPTree node) {
final BSPTree parent = node.getParent();
if (parent == null) {
return false;
} else {
return node == childBefore(parent);
}
}
/** Check if a node is the child after its parent in trigonometric order.
* @param node child node considered
* @return true is the node has a parent end is after it in trigonometric order
*/
private boolean isAfterParent(final BSPTree node) {
final BSPTree parent = node.getParent();
if (parent == null) {
return false;
} else {
return node == childAfter(parent);
}
}
/** Find the child node just before an internal node.
* @param node internal node at which the sub-tree starts
* @return child node just before the internal node
*/
private BSPTree childBefore(BSPTree node) {
if (isDirect(node)) {
// smaller angles are on minus side, larger angles are on plus side
return node.getMinus();
} else {
// smaller angles are on plus side, larger angles are on minus side
return node.getPlus();
}
}
/** Find the child node just after an internal node.
* @param node internal node at which the sub-tree starts
* @return child node just after the internal node
*/
private BSPTree childAfter(BSPTree node) {
if (isDirect(node)) {
// smaller angles are on minus side, larger angles are on plus side
return node.getPlus();
} else {
// smaller angles are on plus side, larger angles are on minus side
return node.getMinus();
}
}
/** Check if an internal node has a direct limit angle.
* @param node internal node to check
* @return true if the limit angle is direct
*/
private boolean isDirect(final BSPTree node) {
return ((LimitAngle) node.getCut().getHyperplane()).isDirect();
}
/** Get the limit angle of an internal node.
* @param node internal node to check
* @return limit angle
*/
private double getAngle(final BSPTree node) {
return ((LimitAngle) node.getCut().getHyperplane()).getLocation().getAlpha();
}
/** {@inheritDoc} */
@Override
public ArcsSet buildNew(final BSPTree tree) {
return new ArcsSet(tree, getTolerance());
}
/** {@inheritDoc} */
@Override
protected void computeGeometricalProperties() {
if (getTree(false).getCut() == null) {
setBarycenter(S1Point.NaN);
setSize(((Boolean) getTree(false).getAttribute()) ? MathUtils.TWO_PI : 0);
} else {
double size = 0.0;
double sum = 0.0;
for (final double[] a : this) {
final double length = a[1] - a[0];
size += length;
sum += length * (a[0] + a[1]);
}
setSize(size);
if (Precision.equals(size, MathUtils.TWO_PI, 0)) {
setBarycenter(S1Point.NaN);
} else if (size >= Precision.SAFE_MIN) {
setBarycenter(new S1Point(sum / (2 * size)));
} else {
final LimitAngle limit = (LimitAngle) getTree(false).getCut().getHyperplane();
setBarycenter(limit.getLocation());
}
}
}
/** {@inheritDoc}
*/
@Override
public BoundaryProjection projectToBoundary(final Point point) {
// get position of test point
final double alpha = ((S1Point) point).getAlpha();
boolean wrapFirst = false;
double first = Double.NaN;
double previous = Double.NaN;
for (final double[] a : this) {
if (Double.isNaN(first)) {
// remember the first angle in case we need it later
first = a[0];
}
if (!wrapFirst) {
if (alpha < a[0]) {
// the test point lies between the previous and the current arcs
// offset will be positive
if (Double.isNaN(previous)) {
// we need to wrap around the circle
wrapFirst = true;
} else {
final double previousOffset = alpha - previous;
final double currentOffset = a[0] - alpha;
if (previousOffset < currentOffset) {
return new BoundaryProjection(point, new S1Point(previous), previousOffset);
} else {
return new BoundaryProjection(point, new S1Point(a[0]), currentOffset);
}
}
} else if (alpha <= a[1]) {
// the test point lies within the current arc
// offset will be negative
final double offset0 = a[0] - alpha;
final double offset1 = alpha - a[1];
if (offset0 < offset1) {
return new BoundaryProjection(point, new S1Point(a[1]), offset1);
} else {
return new BoundaryProjection(point, new S1Point(a[0]), offset0);
}
}
}
previous = a[1];
}
if (Double.isNaN(previous)) {
// there are no points at all in the arcs set
return new BoundaryProjection(point, null, MathUtils.TWO_PI);
} else {
// the test point if before first arc and after last arc,
// somewhere around the 0/2 \pi crossing
if (wrapFirst) {
// the test point is between 0 and first
final double previousOffset = alpha - (previous - MathUtils.TWO_PI);
final double currentOffset = first - alpha;
if (previousOffset < currentOffset) {
return new BoundaryProjection(point, new S1Point(previous), previousOffset);
} else {
return new BoundaryProjection(point, new S1Point(first), currentOffset);
}
} else {
// the test point is between last and 2\pi
final double previousOffset = alpha - previous;
final double currentOffset = first + MathUtils.TWO_PI - alpha;
if (previousOffset < currentOffset) {
return new BoundaryProjection(point, new S1Point(previous), previousOffset);
} else {
return new BoundaryProjection(point, new S1Point(first), currentOffset);
}
}
}
}
/** Build an ordered list of arcs representing the instance.
* This method builds this arcs set as an ordered list of
* {@link Arc Arc} elements. An empty tree will build an empty list
* while a tree representing the whole circle will build a one
* element list with bounds set to \( 0 and 2 \pi \).
* @return a new ordered list containing {@link Arc Arc} elements
*/
public List asList() {
final List list = new ArrayList<>();
for (final double[] a : this) {
list.add(new Arc(a[0], a[1], getTolerance()));
}
return list;
}
/** {@inheritDoc}
*
* The iterator returns the limit angles pairs of sub-arcs in trigonometric order.
*
*
* The iterator does not support the optional {@code remove} operation.
*
*/
@Override
public Iterator iterator() {
return new SubArcsIterator();
}
/** Local iterator for sub-arcs. */
private class SubArcsIterator implements Iterator {
/** Start of the first arc. */
private final BSPTree firstStart;
/** Current node. */
private BSPTree current;
/** Sub-arc no yet returned. */
private double[] pending;
/** Simple constructor.
*/
SubArcsIterator() {
firstStart = getFirstArcStart();
current = firstStart;
if (firstStart == null) {
// all the leaf tree nodes share the same inside/outside status
if ((Boolean) getFirstLeaf(getTree(false)).getAttribute()) {
// it is an inside node, it represents the full circle
pending = new double[] {
0, MathUtils.TWO_PI
};
} else {
pending = null;
}
} else {
selectPending();
}
}
/** Walk the tree to select the pending sub-arc.
*/
private void selectPending() {
// look for the start of the arc
BSPTree start = current;
while (start != null && !isArcStart(start)) {
start = nextInternalNode(start);
}
if (start == null) {
// we have exhausted the iterator
current = null;
pending = null;
return;
}
// look for the end of the arc
BSPTree end = start;
while (end != null && !isArcEnd(end)) {
end = nextInternalNode(end);
}
if (end != null) {
// we have identified the arc
pending = new double[] {
getAngle(start), getAngle(end)
};
// prepare search for next arc
current = end;
} else {
// the final arc wraps around 2\pi, its end is before the first start
end = firstStart;
while (end != null && !isArcEnd(end)) {
end = previousInternalNode(end);
}
if (end == null) {
// this should never happen
throw MathRuntimeException.createInternalError();
}
// we have identified the last arc
pending = new double[] {
getAngle(start), getAngle(end) + MathUtils.TWO_PI
};
// there won't be any other arcs
current = null;
}
}
/** {@inheritDoc} */
@Override
public boolean hasNext() {
return pending != null;
}
/** {@inheritDoc} */
@Override
public double[] next() {
if (pending == null) {
throw new NoSuchElementException();
}
final double[] next = pending;
selectPending();
return next;
}
/** {@inheritDoc} */
@Override
public void remove() {
throw new UnsupportedOperationException();
}
}
/** Compute the relative position of the instance with respect
* to an arc.
*
* The {@link Side#MINUS} side of the arc is the one covered by the arc.
*
* @param arc arc to check instance against
* @return one of {@link Side#PLUS}, {@link Side#MINUS}, {@link Side#BOTH}
* or {@link Side#HYPER}
* @deprecated as of 3.6, replaced with {@link #split(Arc)}.{@link Split#getSide()}
*/
@Deprecated
public Side side(final Arc arc) {
return split(arc).getSide();
}
/** Split the instance in two parts by an arc.
* @param arc splitting arc
* @return an object containing both the part of the instance
* on the plus side of the arc and the part of the
* instance on the minus side of the arc
*/
public Split split(final Arc arc) {
final List minus = new ArrayList<>();
final List plus = new ArrayList<>();
final double reference = FastMath.PI + arc.getInf();
final double arcLength = arc.getSup() - arc.getInf();
for (final double[] a : this) {
final double syncedStart = MathUtils.normalizeAngle(a[0], reference) - arc.getInf();
final double arcOffset = a[0] - syncedStart;
final double syncedEnd = a[1] - arcOffset;
if (syncedStart < arcLength) {
// the start point a[0] is in the minus part of the arc
minus.add(a[0]);
if (syncedEnd > arcLength) {
// the end point a[1] is past the end of the arc
// so we leave the minus part and enter the plus part
final double minusToPlus = arcLength + arcOffset;
minus.add(minusToPlus);
plus.add(minusToPlus);
if (syncedEnd > MathUtils.TWO_PI) {
// in fact the end point a[1] goes far enough that we
// leave the plus part of the arc and enter the minus part again
final double plusToMinus = MathUtils.TWO_PI + arcOffset;
plus.add(plusToMinus);
minus.add(plusToMinus);
minus.add(a[1]);
} else {
// the end point a[1] is in the plus part of the arc
plus.add(a[1]);
}
} else {
// the end point a[1] is in the minus part of the arc
minus.add(a[1]);
}
} else {
// the start point a[0] is in the plus part of the arc
plus.add(a[0]);
if (syncedEnd > MathUtils.TWO_PI) {
// the end point a[1] wraps around to the start of the arc
// so we leave the plus part and enter the minus part
final double plusToMinus = MathUtils.TWO_PI + arcOffset;
plus.add(plusToMinus);
minus.add(plusToMinus);
if (syncedEnd > MathUtils.TWO_PI + arcLength) {
// in fact the end point a[1] goes far enough that we
// leave the minus part of the arc and enter the plus part again
final double minusToPlus = MathUtils.TWO_PI + arcLength + arcOffset;
minus.add(minusToPlus);
plus.add(minusToPlus);
plus.add(a[1]);
} else {
// the end point a[1] is in the minus part of the arc
minus.add(a[1]);
}
} else {
// the end point a[1] is in the plus part of the arc
plus.add(a[1]);
}
}
}
return new Split(createSplitPart(plus), createSplitPart(minus));
}
/** Add an arc limit to a BSP tree under construction.
* @param tree BSP tree under construction
* @param alpha arc limit
* @param isStart if true, the limit is the start of an arc
*/
private void addArcLimit(final BSPTree tree, final double alpha, final boolean isStart) {
final LimitAngle limit = new LimitAngle(new S1Point(alpha), !isStart, getTolerance());
final BSPTree node = tree.getCell(limit.getLocation(), getTolerance());
if (node.getCut() != null) {
// this should never happen
throw MathRuntimeException.createInternalError();
}
node.insertCut(limit);
node.setAttribute(null);
node.getPlus().setAttribute(Boolean.FALSE);
node.getMinus().setAttribute(Boolean.TRUE);
}
/** Create a split part.
*
* As per construction, the list of limit angles is known to have
* an even number of entries, with start angles at even indices and
* end angles at odd indices.
*
* @param limits limit angles of the split part
* @return split part (may be null)
*/
private ArcsSet createSplitPart(final List limits) {
if (limits.isEmpty()) {
return null;
} else {
// collapse close limit angles
for (int i = 0; i < limits.size(); ++i) {
final int j = (i + 1) % limits.size();
final double lA = limits.get(i);
final double lB = MathUtils.normalizeAngle(limits.get(j), lA);
if (FastMath.abs(lB - lA) <= getTolerance()) {
// the two limits are too close to each other, we remove both of them
if (j > 0) {
// regular case, the two entries are consecutive ones
limits.remove(j);
limits.remove(i);
i = i - 1;
} else {
// special case, i the the last entry and j is the first entry
// we have wrapped around list end
final double lEnd = limits.remove(limits.size() - 1);
final double lStart = limits.remove(0);
if (limits.isEmpty()) {
// the ends were the only limits, is it a full circle or an empty circle?
if (lEnd - lStart > FastMath.PI) {
// it was full circle
return new ArcsSet(new BSPTree(Boolean.TRUE), getTolerance());
} else {
// it was an empty circle
return null;
}
} else {
// we have removed the first interval start, so our list
// currently starts with an interval end, which is wrong
// we need to move this interval end to the end of the list
limits.add(limits.remove(0) + MathUtils.TWO_PI);
}
}
}
}
// build the tree by adding all angular sectors
BSPTree tree = new BSPTree<>(Boolean.FALSE);
for (int i = 0; i < limits.size() - 1; i += 2) {
addArcLimit(tree, limits.get(i), true);
addArcLimit(tree, limits.get(i + 1), false);
}
if (tree.getCut() == null) {
// we did not insert anything
return null;
}
return new ArcsSet(tree, getTolerance());
}
}
/** Class holding the results of the {@link #split split} method.
*/
public static class Split {
/** Part of the arcs set on the plus side of the splitting arc. */
private final ArcsSet plus;
/** Part of the arcs set on the minus side of the splitting arc. */
private final ArcsSet minus;
/** Build a Split from its parts.
* @param plus part of the arcs set on the plus side of the
* splitting arc
* @param minus part of the arcs set on the minus side of the
* splitting arc
*/
private Split(final ArcsSet plus, final ArcsSet minus) {
this.plus = plus;
this.minus = minus;
}
/** Get the part of the arcs set on the plus side of the splitting arc.
* @return part of the arcs set on the plus side of the splitting arc
*/
public ArcsSet getPlus() {
return plus;
}
/** Get the part of the arcs set on the minus side of the splitting arc.
* @return part of the arcs set on the minus side of the splitting arc
*/
public ArcsSet getMinus() {
return minus;
}
/** Get the side of the split arc with respect to its splitter.
* @return {@link Side#PLUS} if only {@link #getPlus()} returns non-null,
* {@link Side#MINUS} if only {@link #getMinus()} returns non-null,
* {@link Side#BOTH} if both {@link #getPlus()} and {@link #getMinus()}
* return non-null or {@link Side#HYPER} if both {@link #getPlus()} and
* {@link #getMinus()} return null
*/
public Side getSide() {
if (plus != null) {
if (minus != null) {
return Side.BOTH;
} else {
return Side.PLUS;
}
} else if (minus != null) {
return Side.MINUS;
} else {
return Side.HYPER;
}
}
}
/** Specialized exception for inconsistent BSP tree state inconsistency.
*
* This exception is thrown at {@link ArcsSet} construction time when the
* {@link org.hipparchus.geometry.partitioning.Region.Location inside/outside}
* state is not consistent at the 0, \(2 \pi \) crossing.
*
*/
public static class InconsistentStateAt2PiWrapping extends MathIllegalArgumentException {
/** Serializable UID. */
private static final long serialVersionUID = 20140107L;
/** Simple constructor.
*/
public InconsistentStateAt2PiWrapping() {
super(LocalizedGeometryFormats.INCONSISTENT_STATE_AT_2_PI_WRAPPING);
}
}
}