All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.geometry.spherical.twod.S2Point Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.geometry.spherical.twod;

import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.geometry.Point;
import org.hipparchus.geometry.Space;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;

/** This class represents a point on the 2-sphere.
 * 

* We use the mathematical convention to use the azimuthal angle \( \theta \) * in the x-y plane as the first coordinate, and the polar angle \( \varphi \) * as the second coordinate (see Spherical * Coordinates in MathWorld). *

*

Instances of this class are guaranteed to be immutable.

*/ public class S2Point implements Point { /** +I (coordinates: \( \theta = 0, \varphi = \pi/2 \)). */ public static final S2Point PLUS_I = new S2Point(0, 0.5 * FastMath.PI, Vector3D.PLUS_I); /** +J (coordinates: \( \theta = \pi/2, \varphi = \pi/2 \))). */ public static final S2Point PLUS_J = new S2Point(0.5 * FastMath.PI, 0.5 * FastMath.PI, Vector3D.PLUS_J); /** +K (coordinates: \( \theta = any angle, \varphi = 0 \)). */ public static final S2Point PLUS_K = new S2Point(0, 0, Vector3D.PLUS_K); /** -I (coordinates: \( \theta = \pi, \varphi = \pi/2 \)). */ public static final S2Point MINUS_I = new S2Point(FastMath.PI, 0.5 * FastMath.PI, Vector3D.MINUS_I); /** -J (coordinates: \( \theta = 3\pi/2, \varphi = \pi/2 \)). */ public static final S2Point MINUS_J = new S2Point(1.5 * FastMath.PI, 0.5 * FastMath.PI, Vector3D.MINUS_J); /** -K (coordinates: \( \theta = any angle, \varphi = \pi \)). */ public static final S2Point MINUS_K = new S2Point(0, FastMath.PI, Vector3D.MINUS_K); // CHECKSTYLE: stop ConstantName /** A vector with all coordinates set to NaN. */ public static final S2Point NaN = new S2Point(Double.NaN, Double.NaN, Vector3D.NaN); // CHECKSTYLE: resume ConstantName /** Serializable UID. */ private static final long serialVersionUID = 20131218L; /** Azimuthal angle \( \theta \) in the x-y plane. */ private final double theta; /** Polar angle \( \varphi \). */ private final double phi; /** Corresponding 3D normalized vector. */ private final Vector3D vector; /** Simple constructor. * Build a vector from its spherical coordinates * @param theta azimuthal angle \( \theta \) in the x-y plane * @param phi polar angle \( \varphi \) * @see #getTheta() * @see #getPhi() * @exception MathIllegalArgumentException if \( \varphi \) is not in the [\( 0; \pi \)] range */ public S2Point(final double theta, final double phi) throws MathIllegalArgumentException { this(theta, phi, vector(theta, phi)); } /** Simple constructor. * Build a vector from its underlying 3D vector * @param vector 3D vector * @exception MathRuntimeException if vector norm is zero */ public S2Point(final Vector3D vector) throws MathRuntimeException { this(FastMath.atan2(vector.getY(), vector.getX()), Vector3D.angle(Vector3D.PLUS_K, vector), vector.normalize()); } /** Build a point from its internal components. * @param theta azimuthal angle \( \theta \) in the x-y plane * @param phi polar angle \( \varphi \) * @param vector corresponding vector */ private S2Point(final double theta, final double phi, final Vector3D vector) { this.theta = theta; this.phi = phi; this.vector = vector; } /** Build the normalized vector corresponding to spherical coordinates. * @param theta azimuthal angle \( \theta \) in the x-y plane * @param phi polar angle \( \varphi \) * @return normalized vector * @exception MathIllegalArgumentException if \( \varphi \) is not in the [\( 0; \pi \)] range */ private static Vector3D vector(final double theta, final double phi) throws MathIllegalArgumentException { MathUtils.checkRangeInclusive(phi, 0, FastMath.PI); final double cosTheta = FastMath.cos(theta); final double sinTheta = FastMath.sin(theta); final double cosPhi = FastMath.cos(phi); final double sinPhi = FastMath.sin(phi); return new Vector3D(cosTheta * sinPhi, sinTheta * sinPhi, cosPhi); } /** Get the azimuthal angle \( \theta \) in the x-y plane. * @return azimuthal angle \( \theta \) in the x-y plane * @see #S2Point(double, double) */ public double getTheta() { return theta; } /** Get the polar angle \( \varphi \). * @return polar angle \( \varphi \) * @see #S2Point(double, double) */ public double getPhi() { return phi; } /** Get the corresponding normalized vector in the 3D euclidean space. * @return normalized vector */ public Vector3D getVector() { return vector; } /** {@inheritDoc} */ @Override public Space getSpace() { return Sphere2D.getInstance(); } /** {@inheritDoc} */ @Override public boolean isNaN() { return Double.isNaN(theta) || Double.isNaN(phi); } /** Get the opposite of the instance. * @return a new vector which is opposite to the instance */ public S2Point negate() { return new S2Point(-theta, FastMath.PI - phi, vector.negate()); } /** {@inheritDoc} */ @Override public double distance(final Point point) { return distance(this, (S2Point) point); } /** Compute the distance (angular separation) between two points. * @param p1 first vector * @param p2 second vector * @return the angular separation between p1 and p2 */ public static double distance(S2Point p1, S2Point p2) { return Vector3D.angle(p1.vector, p2.vector); } /** * Test for the equality of two points on the 2-sphere. *

* If all coordinates of two points are exactly the same, and none are * Double.NaN, the two points are considered to be equal. *

*

* NaN coordinates are considered to affect globally the vector * and be equals to each other - i.e, if either (or all) coordinates of the * 2D vector are equal to Double.NaN, the 2D vector is equal to * {@link #NaN}. *

* * @param other Object to test for equality to this * @return true if two points on the 2-sphere objects are equal, false if * object is null, not an instance of S2Point, or * not equal to this S2Point instance * */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof S2Point) { final S2Point rhs = (S2Point) other; if (rhs.isNaN()) { return this.isNaN(); } return (theta == rhs.theta) && (phi == rhs.phi); } return false; } /** * Get a hashCode for the 2D vector. *

* All NaN values have the same hash code.

* * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 542; } return 134 * (37 * MathUtils.hash(theta) + MathUtils.hash(phi)); } @Override public String toString() { return "S2Point{" + "theta=" + theta + ", phi=" + phi + '}'; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy