All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.optim.nonlinear.vector.leastsquares.GaussNewtonOptimizer Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.optim.nonlinear.vector.leastsquares;

import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.exception.NullArgumentException;
import org.hipparchus.linear.ArrayRealVector;
import org.hipparchus.linear.MatrixDecomposer;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.QRDecomposer;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
import org.hipparchus.optim.ConvergenceChecker;
import org.hipparchus.optim.LocalizedOptimFormats;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
import org.hipparchus.util.Incrementor;
import org.hipparchus.util.Pair;

/**
 * Gauss-Newton least-squares solver.
 * 

* This class solve a least-square problem by solving the normal equations * of the linearized problem at each iteration. Either LU decomposition or * Cholesky decomposition can be used to solve the normal equations, or QR * decomposition or SVD decomposition can be used to solve the linear system. * Cholesky/LU decomposition is faster but QR decomposition is more robust for difficult * problems, and SVD can compute a solution for rank-deficient problems. */ public class GaussNewtonOptimizer implements LeastSquaresOptimizer { /** * The singularity threshold for matrix decompositions. Determines when a {@link * MathIllegalStateException} is thrown. The current value was the default value for {@link * org.hipparchus.linear.LUDecomposition}. */ private static final double SINGULARITY_THRESHOLD = 1e-11; /** Decomposer */ private final MatrixDecomposer decomposer; /** Indicates if normal equations should be formed explicitly. */ private final boolean formNormalEquations; /** * Creates a Gauss Newton optimizer. *

* The default for the algorithm is to use QR decomposition and not * form normal equations. *

*/ public GaussNewtonOptimizer() { this(new QRDecomposer(SINGULARITY_THRESHOLD), false); } /** * Create a Gauss Newton optimizer that uses the given matrix decomposition algorithm * to solve the normal equations. * * @param decomposer the decomposition algorithm to use. * @param formNormalEquations whether the normal equations should be explicitly * formed. If {@code true} then {@code decomposer} is used * to solve JTJx=JTr, otherwise * {@code decomposer} is used to solve Jx=r. If {@code * decomposer} can only solve square systems then this * parameter should be {@code true}. */ public GaussNewtonOptimizer(final MatrixDecomposer decomposer, final boolean formNormalEquations) { this.decomposer = decomposer; this.formNormalEquations = formNormalEquations; } /** * Get the matrix decomposition algorithm. * * @return the decomposition algorithm. */ public MatrixDecomposer getDecomposer() { return decomposer; } /** * Configure the matrix decomposition algorithm. * * @param newDecomposer the decomposition algorithm to use. * @return a new instance. */ public GaussNewtonOptimizer withDecomposer(final MatrixDecomposer newDecomposer) { return new GaussNewtonOptimizer(newDecomposer, this.isFormNormalEquations()); } /** * Get if the normal equations are explicitly formed. * * @return if the normal equations should be explicitly formed. If {@code true} then * {@code decomposer} is used to solve JTJx=JTr, otherwise * {@code decomposer} is used to solve Jx=r. */ public boolean isFormNormalEquations() { return formNormalEquations; } /** * Configure if the normal equations should be explicitly formed. * * @param newFormNormalEquations whether the normal equations should be explicitly * formed. If {@code true} then {@code decomposer} is used * to solve JTJx=JTr, otherwise * {@code decomposer} is used to solve Jx=r. If {@code * decomposer} can only solve square systems then this * parameter should be {@code true}. * @return a new instance. */ public GaussNewtonOptimizer withFormNormalEquations(final boolean newFormNormalEquations) { return new GaussNewtonOptimizer(this.getDecomposer(), newFormNormalEquations); } /** {@inheritDoc} */ @Override public Optimum optimize(final LeastSquaresProblem lsp) { //create local evaluation and iteration counts final Incrementor evaluationCounter = lsp.getEvaluationCounter(); final Incrementor iterationCounter = lsp.getIterationCounter(); final ConvergenceChecker checker = lsp.getConvergenceChecker(); // Computation will be useless without a checker (see "for-loop"). if (checker == null) { throw new NullArgumentException(); } RealVector currentPoint = lsp.getStart(); // iterate until convergence is reached Evaluation current = null; while (true) { iterationCounter.increment(); // evaluate the objective function and its jacobian Evaluation previous = current; // Value of the objective function at "currentPoint". evaluationCounter.increment(); current = lsp.evaluate(currentPoint); final RealVector currentResiduals = current.getResiduals(); final RealMatrix weightedJacobian = current.getJacobian(); currentPoint = current.getPoint(); // Check convergence. if (previous != null && checker.converged(iterationCounter.getCount(), previous, current)) { return Optimum.of(current, evaluationCounter.getCount(), iterationCounter.getCount()); } // solve the linearized least squares problem final RealMatrix lhs; // left hand side final RealVector rhs; // right hand side if (this.formNormalEquations) { final Pair normalEquation = computeNormalMatrix(weightedJacobian, currentResiduals); lhs = normalEquation.getFirst(); rhs = normalEquation.getSecond(); } else { lhs = weightedJacobian; rhs = currentResiduals; } final RealVector dX; try { dX = this.decomposer.decompose(lhs).solve(rhs); } catch (MathIllegalArgumentException e) { // change exception message throw new MathIllegalStateException( LocalizedOptimFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e); } // update the estimated parameters currentPoint = currentPoint.add(dX); } } /** {@inheritDoc} */ @Override public String toString() { return "GaussNewtonOptimizer{" + "decomposer=" + decomposer + ", formNormalEquations=" + formNormalEquations + '}'; } /** * Compute the normal matrix, JTJ. * * @param jacobian the m by n jacobian matrix, J. Input. * @param residuals the m by 1 residual vector, r. Input. * @return the n by n normal matrix and the n by 1 JTr vector. */ private static Pair computeNormalMatrix(final RealMatrix jacobian, final RealVector residuals) { //since the normal matrix is symmetric, we only need to compute half of it. final int nR = jacobian.getRowDimension(); final int nC = jacobian.getColumnDimension(); //allocate space for return values final RealMatrix normal = MatrixUtils.createRealMatrix(nC, nC); final RealVector jTr = new ArrayRealVector(nC); //for each measurement for (int i = 0; i < nR; ++i) { //compute JTr for measurement i for (int j = 0; j < nC; j++) { jTr.setEntry(j, jTr.getEntry(j) + residuals.getEntry(i) * jacobian.getEntry(i, j)); } // add the the contribution to the normal matrix for measurement i for (int k = 0; k < nC; ++k) { //only compute the upper triangular part for (int l = k; l < nC; ++l) { normal.setEntry(k, l, normal.getEntry(k, l) + jacobian.getEntry(i, k) * jacobian.getEntry(i, l)); } } } //copy the upper triangular part to the lower triangular part. for (int i = 0; i < nC; i++) { for (int j = 0; j < i; j++) { normal.setEntry(i, j, normal.getEntry(j, i)); } } return new Pair(normal, jTr); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy