All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.descriptive.moment.StandardDeviation Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.hipparchus.stat.descriptive.moment;

import java.io.Serializable;

import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.NullArgumentException;
import org.hipparchus.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;

/**
 * Computes the sample standard deviation.
 * 

* The standard deviation is the positive square root of the variance. * This implementation wraps a {@link Variance} instance. *

* The isBiasCorrected property of the wrapped Variance * instance is exposed, so that this class can be used to compute both * the "sample standard deviation" (the square root of the bias-corrected * "sample variance") or the "population standard deviation" (the square * root of the non-bias-corrected "population variance"). * See {@link Variance} for more information. *

* Note that this implementation is not synchronized. If * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the increment() or * clear() method, it must be synchronized externally. */ public class StandardDeviation extends AbstractStorelessUnivariateStatistic implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 20150412L; /** Wrapped Variance instance */ private final Variance variance; /** * Constructs a StandardDeviation. Sets the underlying {@link Variance} * instance's isBiasCorrected property to true. */ public StandardDeviation() { this(new Variance()); } /** * Constructs a StandardDeviation from an external second moment. * * @param m2 the external moment */ public StandardDeviation(final SecondMoment m2) { this(new Variance(m2)); } /** * Constructs a StandardDeviation with the specified value for the * isBiasCorrected property. If this property is set to * true, the {@link Variance} used in computing results will * use the bias-corrected, or "sample" formula. See {@link Variance} for * details. * * @param isBiasCorrected whether or not the variance computation will use * the bias-corrected formula */ public StandardDeviation(boolean isBiasCorrected) { this(new Variance(isBiasCorrected)); } /** * Constructs a StandardDeviation with the specified value for the * isBiasCorrected property and the supplied external moment. * If isBiasCorrected is set to true, the * {@link Variance} used in computing results will use the bias-corrected, * or "sample" formula. See {@link Variance} for details. * * @param isBiasCorrected whether or not the variance computation will use * the bias-corrected formula * @param m2 the external moment */ public StandardDeviation(boolean isBiasCorrected, SecondMoment m2) { this(new Variance(isBiasCorrected, m2)); } /** * Create a new instance with the given variance. * @param variance the variance to use */ private StandardDeviation(Variance variance) { this.variance = variance; } /** * Copy constructor, creates a new {@code StandardDeviation} identical * to the {@code original}. * * @param original the {@code StandardDeviation} instance to copy * @throws NullArgumentException if original is null */ public StandardDeviation(StandardDeviation original) throws NullArgumentException { MathUtils.checkNotNull(original); this.variance = original.variance.copy(); } /** {@inheritDoc} */ @Override public void increment(final double d) { variance.increment(d); } /** {@inheritDoc} */ @Override public long getN() { return variance.getN(); } /** {@inheritDoc} */ @Override public double getResult() { return FastMath.sqrt(variance.getResult()); } /** {@inheritDoc} */ @Override public void clear() { variance.clear(); } /** * Returns the Standard Deviation of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Returns 0 for a single-value (i.e. length = 1) sample. *

* Does not change the internal state of the statistic. * * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the standard deviation of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ @Override public double evaluate(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return FastMath.sqrt(variance.evaluate(values, begin, length)); } /** * Returns the Standard Deviation of the entries in the specified portion of * the input array, using the precomputed mean value. Returns * Double.NaN if the designated subarray is empty. *

* Returns 0 for a single-value (i.e. length = 1) sample. *

* The formula used assumes that the supplied mean value is the arithmetic * mean of the sample data, not a known population parameter. This method * is supplied only to save computation when the mean has already been * computed. *

* Does not change the internal state of the statistic. * * @param values the input array * @param mean the precomputed mean value * @param begin index of the first array element to include * @param length the number of elements to include * @return the standard deviation of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public double evaluate(final double[] values, final double mean, final int begin, final int length) throws MathIllegalArgumentException { return FastMath.sqrt(variance.evaluate(values, mean, begin, length)); } /** * Returns the Standard Deviation of the entries in the input array, using * the precomputed mean value. Returns * Double.NaN if the designated subarray is empty. *

* Returns 0 for a single-value (i.e. length = 1) sample. *

* The formula used assumes that the supplied mean value is the arithmetic * mean of the sample data, not a known population parameter. This method * is supplied only to save computation when the mean has already been * computed. *

* Does not change the internal state of the statistic. * * @param values the input array * @param mean the precomputed mean value * @return the standard deviation of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null */ public double evaluate(final double[] values, final double mean) throws MathIllegalArgumentException { return FastMath.sqrt(variance.evaluate(values, mean)); } /** * @return Returns the isBiasCorrected. */ public boolean isBiasCorrected() { return variance.isBiasCorrected(); } /** * Returns a new copy of this standard deviation with the given * bias correction setting. * * @param biasCorrection The bias correction flag to set. * @return a copy of this instance with the given bias correction setting */ public StandardDeviation withBiasCorrection(boolean biasCorrection) { return new StandardDeviation(variance.withBiasCorrection(biasCorrection)); } /** {@inheritDoc} */ @Override public StandardDeviation copy() { return new StandardDeviation(this); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy