All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.inference.KolmogorovSmirnovTest Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.hipparchus.stat.inference;

import java.math.BigDecimal;
import java.util.Arrays;
import java.util.HashSet;

import org.hipparchus.distribution.RealDistribution;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.fraction.BigFraction;
import org.hipparchus.fraction.BigFractionField;
import org.hipparchus.linear.Array2DRowFieldMatrix;
import org.hipparchus.linear.FieldMatrix;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.random.RandomDataGenerator;
import org.hipparchus.random.RandomGenerator;
import org.hipparchus.util.CombinatoricsUtils;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.MathUtils;

/**
 * Implementation of the 
 * Kolmogorov-Smirnov (K-S) test for equality of continuous distributions.
 * 

* The K-S test uses a statistic based on the maximum deviation of the empirical distribution of * sample data points from the distribution expected under the null hypothesis. For one-sample tests * evaluating the null hypothesis that a set of sample data points follow a given distribution, the * test statistic is \(D_n=\sup_x |F_n(x)-F(x)|\), where \(F\) is the expected distribution and * \(F_n\) is the empirical distribution of the \(n\) sample data points. The distribution of * \(D_n\) is estimated using a method based on [1] with certain quick decisions for extreme values * given in [2]. *

* Two-sample tests are also supported, evaluating the null hypothesis that the two samples * {@code x} and {@code y} come from the same underlying distribution. In this case, the test * statistic is \(D_{n,m}=\sup_t | F_n(t)-F_m(t)|\) where \(n\) is the length of {@code x}, \(m\) is * the length of {@code y}, \(F_n\) is the empirical distribution that puts mass \(1/n\) at each of * the values in {@code x} and \(F_m\) is the empirical distribution of the {@code y} values. The * default 2-sample test method, {@link #kolmogorovSmirnovTest(double[], double[])} works as * follows: *

    *
  • For small samples (where the product of the sample sizes is less than * {@value #LARGE_SAMPLE_PRODUCT}), the method presented in [4] is used to compute the * exact p-value for the 2-sample test.
  • *
  • When the product of the sample sizes exceeds {@value #LARGE_SAMPLE_PRODUCT}, the asymptotic * distribution of \(D_{n,m}\) is used. See {@link #approximateP(double, int, int)} for details on * the approximation.
  • *
*

* If the product of the sample sizes is less than {@value #LARGE_SAMPLE_PRODUCT} and the sample * data contains ties, random jitter is added to the sample data to break ties before applying * the algorithm above. Alternatively, the {@link #bootstrap(double[], double[], int, boolean)} * method, modeled after ks.boot * in the R Matching package [3], can be used if ties are known to be present in the data. *

* In the two-sample case, \(D_{n,m}\) has a discrete distribution. This makes the p-value * associated with the null hypothesis \(H_0 : D_{n,m} \ge d \) differ from \(H_0 : D_{n,m} > d \) * by the mass of the observed value \(d\). To distinguish these, the two-sample tests use a boolean * {@code strict} parameter. This parameter is ignored for large samples. *

* The methods used by the 2-sample default implementation are also exposed directly: *

    *
  • {@link #exactP(double, int, int, boolean)} computes exact 2-sample p-values
  • *
  • {@link #approximateP(double, int, int)} uses the asymptotic distribution The {@code boolean} * arguments in the first two methods allow the probability used to estimate the p-value to be * expressed using strict or non-strict inequality. See * {@link #kolmogorovSmirnovTest(double[], double[], boolean)}.
  • *
*

* References: *

*

* Note that [1] contains an error in computing h, refer to MATH-437 for details. */ public class KolmogorovSmirnovTest { /** * Bound on the number of partial sums in {@link #ksSum(double, double, int)} */ protected static final int MAXIMUM_PARTIAL_SUM_COUNT = 100000; /** Convergence criterion for {@link #ksSum(double, double, int)} */ protected static final double KS_SUM_CAUCHY_CRITERION = 1E-20; /** Convergence criterion for the sums in #pelzGood(double, double, int)} */ protected static final double PG_SUM_RELATIVE_ERROR = 1.0e-10; /** * When product of sample sizes exceeds this value, 2-sample K-S test uses asymptotic * distribution to compute the p-value. */ protected static final int LARGE_SAMPLE_PRODUCT = 10000; /** * RandomDataGenerator used by {@link #bootstrap(double[], double[], int)} * or to generate jitter to break ties in the data. */ private final RandomDataGenerator gen = new RandomDataGenerator(); /** * Construct a KolmogorovSmirnovTest instance. */ public KolmogorovSmirnovTest() { super(); } /** * Construct a KolmogorovSmirnovTest instance providing a seed for the PRNG * used by the {@link #bootstrap(double[], double[], int)} method. * * @param seed the seed for the PRNG */ public KolmogorovSmirnovTest(long seed) { super(); gen.setSeed(seed); } /** * Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test * evaluating the null hypothesis that {@code data} conforms to {@code distribution}. If * {@code exact} is true, the distribution used to compute the p-value is computed using * extended precision. See {@link #cdfExact(double, int)}. * * @param distribution reference distribution * @param data sample being being evaluated * @param exact whether or not to force exact computation of the p-value * @return the p-value associated with the null hypothesis that {@code data} is a sample from * {@code distribution} * @throws MathIllegalArgumentException if {@code data} does not have length at least 2 * @throws org.hipparchus.exception.NullArgumentException if {@code data} is null */ public double kolmogorovSmirnovTest(RealDistribution distribution, double[] data, boolean exact) { return 1d - cdf(kolmogorovSmirnovStatistic(distribution, data), data.length, exact); } /** * Computes the one-sample Kolmogorov-Smirnov test statistic, \(D_n=\sup_x |F_n(x)-F(x)|\) where * \(F\) is the distribution (cdf) function associated with {@code distribution}, \(n\) is the * length of {@code data} and \(F_n\) is the empirical distribution that puts mass \(1/n\) at * each of the values in {@code data}. * * @param distribution reference distribution * @param data sample being evaluated * @return Kolmogorov-Smirnov statistic \(D_n\) * @throws MathIllegalArgumentException if {@code data} does not have length at least 2 * @throws org.hipparchus.exception.NullArgumentException if {@code data} is null */ public double kolmogorovSmirnovStatistic(RealDistribution distribution, double[] data) { checkArray(data); final int n = data.length; final double nd = n; final double[] dataCopy = new double[n]; System.arraycopy(data, 0, dataCopy, 0, n); Arrays.sort(dataCopy); double d = 0d; for (int i = 1; i <= n; i++) { final double yi = distribution.cumulativeProbability(dataCopy[i - 1]); final double currD = FastMath.max(yi - (i - 1) / nd, i / nd - yi); if (currD > d) { d = currD; } } return d; } /** * Computes the p-value, or observed significance level, of a two-sample Kolmogorov-Smirnov test * evaluating the null hypothesis that {@code x} and {@code y} are samples drawn from the same * probability distribution. Specifically, what is returned is an estimate of the probability * that the {@link #kolmogorovSmirnovStatistic(double[], double[])} associated with a randomly * selected partition of the combined sample into subsamples of sizes {@code x.length} and * {@code y.length} will strictly exceed (if {@code strict} is {@code true}) or be at least as * large as {@code strict = false}) as {@code kolmogorovSmirnovStatistic(x, y)}. *

    *
  • For small samples (where the product of the sample sizes is less than * {@value #LARGE_SAMPLE_PRODUCT}), the exact p-value is computed using the method presented * in [4], implemented in {@link #exactP(double, int, int, boolean)}.
  • *
  • When the product of the sample sizes exceeds {@value #LARGE_SAMPLE_PRODUCT}, the * asymptotic distribution of \(D_{n,m}\) is used. See {@link #approximateP(double, int, int)} * for details on the approximation.
  • *

* If {@code x.length * y.length} < {@value #LARGE_SAMPLE_PRODUCT} and the combined set of values in * {@code x} and {@code y} contains ties, random jitter is added to {@code x} and {@code y} to * break ties before computing \(D_{n,m}\) and the p-value. The jitter is uniformly distributed * on (-minDelta / 2, minDelta / 2) where minDelta is the smallest pairwise difference between * values in the combined sample.

*

* If ties are known to be present in the data, {@link #bootstrap(double[], double[], int, boolean)} * may be used as an alternative method for estimating the p-value.

* * @param x first sample dataset * @param y second sample dataset * @param strict whether or not the probability to compute is expressed as a strict inequality * (ignored for large samples) * @return p-value associated with the null hypothesis that {@code x} and {@code y} represent * samples from the same distribution * @throws MathIllegalArgumentException if either {@code x} or {@code y} does not have length at * least 2 * @throws org.hipparchus.exception.NullArgumentException if either {@code x} or {@code y} is null * @see #bootstrap(double[], double[], int, boolean) */ public double kolmogorovSmirnovTest(double[] x, double[] y, boolean strict) { final long lengthProduct = (long) x.length * y.length; double[] xa = null; double[] ya = null; if (lengthProduct < LARGE_SAMPLE_PRODUCT && hasTies(x,y)) { xa = x.clone(); ya = y.clone(); fixTies(xa, ya); } else { xa = x; ya = y; } if (lengthProduct < LARGE_SAMPLE_PRODUCT) { return exactP(kolmogorovSmirnovStatistic(xa, ya), x.length, y.length, strict); } return approximateP(kolmogorovSmirnovStatistic(x, y), x.length, y.length); } /** * Computes the p-value, or observed significance level, of a two-sample Kolmogorov-Smirnov test * evaluating the null hypothesis that {@code x} and {@code y} are samples drawn from the same * probability distribution. Assumes the strict form of the inequality used to compute the * p-value. See {@link #kolmogorovSmirnovTest(RealDistribution, double[], boolean)}. * * @param x first sample dataset * @param y second sample dataset * @return p-value associated with the null hypothesis that {@code x} and {@code y} represent * samples from the same distribution * @throws MathIllegalArgumentException if either {@code x} or {@code y} does not have length at * least 2 * @throws org.hipparchus.exception.NullArgumentException if either {@code x} or {@code y} is null */ public double kolmogorovSmirnovTest(double[] x, double[] y) { return kolmogorovSmirnovTest(x, y, true); } /** * Computes the two-sample Kolmogorov-Smirnov test statistic, \(D_{n,m}=\sup_x |F_n(x)-F_m(x)|\) * where \(n\) is the length of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the * empirical distribution that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\) * is the empirical distribution of the {@code y} values. * * @param x first sample * @param y second sample * @return test statistic \(D_{n,m}\) used to evaluate the null hypothesis that {@code x} and * {@code y} represent samples from the same underlying distribution * @throws MathIllegalArgumentException if either {@code x} or {@code y} does not have length at * least 2 * @throws org.hipparchus.exception.NullArgumentException if either {@code x} or {@code y} is null */ public double kolmogorovSmirnovStatistic(double[] x, double[] y) { return integralKolmogorovSmirnovStatistic(x, y)/((double)(x.length * (long)y.length)); } /** * Computes the two-sample Kolmogorov-Smirnov test statistic, \(D_{n,m}=\sup_x |F_n(x)-F_m(x)|\) * where \(n\) is the length of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the * empirical distribution that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\) * is the empirical distribution of the {@code y} values. Finally \(n m D_{n,m}\) is returned * as long value. * * @param x first sample * @param y second sample * @return test statistic \(n m D_{n,m}\) used to evaluate the null hypothesis that {@code x} and * {@code y} represent samples from the same underlying distribution * @throws MathIllegalArgumentException if either {@code x} or {@code y} does not have length at * least 2 * @throws org.hipparchus.exception.NullArgumentException if either {@code x} or {@code y} is null */ private long integralKolmogorovSmirnovStatistic(double[] x, double[] y) { checkArray(x); checkArray(y); // Copy and sort the sample arrays final double[] sx = x.clone(); final double[] sy = y.clone(); Arrays.sort(sx); Arrays.sort(sy); final int n = sx.length; final int m = sy.length; int rankX = 0; int rankY = 0; long curD = 0l; // Find the max difference between cdf_x and cdf_y long supD = 0l; do { double z = Double.compare(sx[rankX], sy[rankY]) <= 0 ? sx[rankX] : sy[rankY]; while(rankX < n && Double.compare(sx[rankX], z) == 0) { rankX += 1; curD += m; } while(rankY < m && Double.compare(sy[rankY], z) == 0) { rankY += 1; curD -= n; } if (curD > supD) { supD = curD; } else if (-curD > supD) { supD = -curD; } } while(rankX < n && rankY < m); return supD; } /** * Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test * evaluating the null hypothesis that {@code data} conforms to {@code distribution}. * * @param distribution reference distribution * @param data sample being being evaluated * @return the p-value associated with the null hypothesis that {@code data} is a sample from * {@code distribution} * @throws MathIllegalArgumentException if {@code data} does not have length at least 2 * @throws org.hipparchus.exception.NullArgumentException if {@code data} is null */ public double kolmogorovSmirnovTest(RealDistribution distribution, double[] data) { return kolmogorovSmirnovTest(distribution, data, false); } /** * Performs a Kolmogorov-Smirnov * test evaluating the null hypothesis that {@code data} conforms to {@code distribution}. * * @param distribution reference distribution * @param data sample being being evaluated * @param alpha significance level of the test * @return true iff the null hypothesis that {@code data} is a sample from {@code distribution} * can be rejected with confidence 1 - {@code alpha} * @throws MathIllegalArgumentException if {@code data} does not have length at least 2 * @throws org.hipparchus.exception.NullArgumentException if {@code data} is null */ public boolean kolmogorovSmirnovTest(RealDistribution distribution, double[] data, double alpha) { if ((alpha <= 0) || (alpha > 0.5)) { throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5); } return kolmogorovSmirnovTest(distribution, data) < alpha; } /** * Estimates the p-value of a two-sample * Kolmogorov-Smirnov test * evaluating the null hypothesis that {@code x} and {@code y} are samples drawn from the same * probability distribution. This method estimates the p-value by repeatedly sampling sets of size * {@code x.length} and {@code y.length} from the empirical distribution of the combined sample. * When {@code strict} is true, this is equivalent to the algorithm implemented in the R function * {@code ks.boot}, described in
     * Jasjeet S. Sekhon. 2011. 'Multivariate and Propensity Score Matching
     * Software with Automated Balance Optimization: The Matching package for R.'
     * Journal of Statistical Software, 42(7): 1-52.
     * 
* @param x first sample * @param y second sample * @param iterations number of bootstrap resampling iterations * @param strict whether or not the null hypothesis is expressed as a strict inequality * @return estimated p-value */ public double bootstrap(double[] x, double[] y, int iterations, boolean strict) { final int xLength = x.length; final int yLength = y.length; final double[] combined = new double[xLength + yLength]; System.arraycopy(x, 0, combined, 0, xLength); System.arraycopy(y, 0, combined, xLength, yLength); final long d = integralKolmogorovSmirnovStatistic(x, y); int greaterCount = 0; int equalCount = 0; double[] curX; double[] curY; long curD; for (int i = 0; i < iterations; i++) { curX = resample(combined, xLength); curY = resample(combined, yLength); curD = integralKolmogorovSmirnovStatistic(curX, curY); if (curD > d) { greaterCount++; } else if (curD == d) { equalCount++; } } return strict ? greaterCount / (double) iterations : (greaterCount + equalCount) / (double) iterations; } /** * Computes {@code bootstrap(x, y, iterations, true)}. * This is equivalent to ks.boot(x,y, nboots=iterations) using the R Matching * package function. See #bootstrap(double[], double[], int, boolean). * * @param x first sample * @param y second sample * @param iterations number of bootstrap resampling iterations * @return estimated p-value */ public double bootstrap(double[] x, double[] y, int iterations) { return bootstrap(x, y, iterations, true); } /** * Return a bootstrap sample (with replacement) of size k from sample. * * @param sample array to sample from * @param k size of bootstrap sample * @return bootstrap sample */ private double[] resample(double[] sample, int k) { final int len = sample.length; final double[] out = new double[k]; for (int i = 0; i < k; i++) { out[i] = gen.nextInt(len); } return out; } /** * Calculates \(P(D_n < d)\) using the method described in [1] with quick decisions for extreme * values given in [2] (see above). The result is not exact as with * {@link #cdfExact(double, int)} because calculations are based on * {@code double} rather than {@link org.hipparchus.fraction.BigFraction}. * * @param d statistic * @param n sample size * @return \(P(D_n < d)\) * @throws MathRuntimeException if algorithm fails to convert {@code h} to a * {@link org.hipparchus.fraction.BigFraction} in expressing {@code d} as \((k * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\) */ public double cdf(double d, int n) throws MathRuntimeException { return cdf(d, n, false); } /** * Calculates {@code P(D_n < d)}. The result is exact in the sense that BigFraction/BigReal is * used everywhere at the expense of very slow execution time. Almost never choose this in real * applications unless you are very sure; this is almost solely for verification purposes. * Normally, you would choose {@link #cdf(double, int)}. See the class * javadoc for definitions and algorithm description. * * @param d statistic * @param n sample size * @return \(P(D_n < d)\) * @throws MathRuntimeException if the algorithm fails to convert {@code h} to a * {@link org.hipparchus.fraction.BigFraction} in expressing {@code d} as \((k * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\) */ public double cdfExact(double d, int n) throws MathRuntimeException { return cdf(d, n, true); } /** * Calculates {@code P(D_n < d)} using method described in [1] with quick decisions for extreme * values given in [2] (see above). * * @param d statistic * @param n sample size * @param exact whether the probability should be calculated exact using * {@link org.hipparchus.fraction.BigFraction} everywhere at the expense of * very slow execution time, or if {@code double} should be used convenient places to * gain speed. Almost never choose {@code true} in real applications unless you are very * sure; {@code true} is almost solely for verification purposes. * @return \(P(D_n < d)\) * @throws MathRuntimeException if algorithm fails to convert {@code h} to a * {@link org.hipparchus.fraction.BigFraction} in expressing {@code d} as \((k * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\). */ public double cdf(double d, int n, boolean exact) throws MathRuntimeException { final double ninv = 1 / ((double) n); final double ninvhalf = 0.5 * ninv; if (d <= ninvhalf) { return 0; } else if (ninvhalf < d && d <= ninv) { double res = 1; final double f = 2 * d - ninv; // n! f^n = n*f * (n-1)*f * ... * 1*x for (int i = 1; i <= n; ++i) { res *= i * f; } return res; } else if (1 - ninv <= d && d < 1) { return 1 - 2 * Math.pow(1 - d, n); } else if (1 <= d) { return 1; } if (exact) { return exactK(d, n); } if (n <= 140) { return roundedK(d, n); } return pelzGood(d, n); } /** * Calculates the exact value of {@code P(D_n < d)} using the method described in [1] (reference * in class javadoc above) and {@link org.hipparchus.fraction.BigFraction} (see * above). * * @param d statistic * @param n sample size * @return the two-sided probability of \(P(D_n < d)\) * @throws MathRuntimeException if algorithm fails to convert {@code h} to a * {@link org.hipparchus.fraction.BigFraction} in expressing {@code d} as \((k * - h) / m\) for integer {@code k, m} and \(0 \le h < 1\). */ private double exactK(double d, int n) throws MathRuntimeException { final int k = (int) Math.ceil(n * d); final FieldMatrix H = this.createExactH(d, n); final FieldMatrix Hpower = H.power(n); BigFraction pFrac = Hpower.getEntry(k - 1, k - 1); for (int i = 1; i <= n; ++i) { pFrac = pFrac.multiply(i).divide(n); } /* * BigFraction.doubleValue converts numerator to double and the denominator to double and * divides afterwards. That gives NaN quite easy. This does not (scale is the number of * digits): */ return pFrac.bigDecimalValue(20, BigDecimal.ROUND_HALF_UP).doubleValue(); } /** * Calculates {@code P(D_n < d)} using method described in [1] and doubles (see above). * * @param d statistic * @param n sample size * @return \(P(D_n < d)\) */ private double roundedK(double d, int n) { final int k = (int) Math.ceil(n * d); final RealMatrix H = this.createRoundedH(d, n); final RealMatrix Hpower = H.power(n); double pFrac = Hpower.getEntry(k - 1, k - 1); for (int i = 1; i <= n; ++i) { pFrac *= (double) i / (double) n; } return pFrac; } /** * Computes the Pelz-Good approximation for \(P(D_n < d)\) as described in [2] in the class javadoc. * * @param d value of d-statistic (x in [2]) * @param n sample size * @return \(P(D_n < d)\) */ public double pelzGood(double d, int n) { // Change the variable since approximation is for the distribution evaluated at d / sqrt(n) final double sqrtN = FastMath.sqrt(n); final double z = d * sqrtN; final double z2 = d * d * n; final double z4 = z2 * z2; final double z6 = z4 * z2; final double z8 = z4 * z4; // Eventual return value double ret = 0; // Compute K_0(z) double sum = 0; double increment = 0; double kTerm = 0; double z2Term = MathUtils.PI_SQUARED / (8 * z2); int k = 1; for (; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) { kTerm = 2 * k - 1; increment = FastMath.exp(-z2Term * kTerm * kTerm); sum += increment; if (increment <= PG_SUM_RELATIVE_ERROR * sum) { break; } } if (k == MAXIMUM_PARTIAL_SUM_COUNT) { throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, MAXIMUM_PARTIAL_SUM_COUNT); } ret = sum * FastMath.sqrt(2 * FastMath.PI) / z; // K_1(z) // Sum is -inf to inf, but k term is always (k + 1/2) ^ 2, so really have // twice the sum from k = 0 to inf (k = -1 is same as 0, -2 same as 1, ...) final double twoZ2 = 2 * z2; sum = 0; kTerm = 0; double kTerm2 = 0; for (k = 0; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) { kTerm = k + 0.5; kTerm2 = kTerm * kTerm; increment = (MathUtils.PI_SQUARED * kTerm2 - z2) * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2); sum += increment; if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum)) { break; } } if (k == MAXIMUM_PARTIAL_SUM_COUNT) { throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, MAXIMUM_PARTIAL_SUM_COUNT); } final double sqrtHalfPi = FastMath.sqrt(FastMath.PI / 2); // Instead of doubling sum, divide by 3 instead of 6 ret += sum * sqrtHalfPi / (3 * z4 * sqrtN); // K_2(z) // Same drill as K_1, but with two doubly infinite sums, all k terms are even powers. final double z4Term = 2 * z4; final double z6Term = 6 * z6; z2Term = 5 * z2; final double pi4 = MathUtils.PI_SQUARED * MathUtils.PI_SQUARED; sum = 0; kTerm = 0; kTerm2 = 0; for (k = 0; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) { kTerm = k + 0.5; kTerm2 = kTerm * kTerm; increment = (z6Term + z4Term + MathUtils.PI_SQUARED * (z4Term - z2Term) * kTerm2 + pi4 * (1 - twoZ2) * kTerm2 * kTerm2) * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2); sum += increment; if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum)) { break; } } if (k == MAXIMUM_PARTIAL_SUM_COUNT) { throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, MAXIMUM_PARTIAL_SUM_COUNT); } double sum2 = 0; kTerm2 = 0; for (k = 1; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) { kTerm2 = k * k; increment = MathUtils.PI_SQUARED * kTerm2 * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2); sum2 += increment; if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum2)) { break; } } if (k == MAXIMUM_PARTIAL_SUM_COUNT) { throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, MAXIMUM_PARTIAL_SUM_COUNT); } // Again, adjust coefficients instead of doubling sum, sum2 ret += (sqrtHalfPi / n) * (sum / (36 * z2 * z2 * z2 * z) - sum2 / (18 * z2 * z)); // K_3(z) One more time with feeling - two doubly infinite sums, all k powers even. // Multiply coefficient denominators by 2, so omit doubling sums. final double pi6 = pi4 * MathUtils.PI_SQUARED; sum = 0; double kTerm4 = 0; double kTerm6 = 0; for (k = 0; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) { kTerm = k + 0.5; kTerm2 = kTerm * kTerm; kTerm4 = kTerm2 * kTerm2; kTerm6 = kTerm4 * kTerm2; increment = (pi6 * kTerm6 * (5 - 30 * z2) + pi4 * kTerm4 * (-60 * z2 + 212 * z4) + MathUtils.PI_SQUARED * kTerm2 * (135 * z4 - 96 * z6) - 30 * z6 - 90 * z8) * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2); sum += increment; if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum)) { break; } } if (k == MAXIMUM_PARTIAL_SUM_COUNT) { throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, MAXIMUM_PARTIAL_SUM_COUNT); } sum2 = 0; for (k = 1; k < MAXIMUM_PARTIAL_SUM_COUNT; k++) { kTerm2 = k * k; kTerm4 = kTerm2 * kTerm2; increment = (-pi4 * kTerm4 + 3 * MathUtils.PI_SQUARED * kTerm2 * z2) * FastMath.exp(-MathUtils.PI_SQUARED * kTerm2 / twoZ2); sum2 += increment; if (FastMath.abs(increment) < PG_SUM_RELATIVE_ERROR * FastMath.abs(sum2)) { break; } } if (k == MAXIMUM_PARTIAL_SUM_COUNT) { throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, MAXIMUM_PARTIAL_SUM_COUNT); } return ret + (sqrtHalfPi / (sqrtN * n)) * (sum / (3240 * z6 * z4) + + sum2 / (108 * z6)); } /*** * Creates {@code H} of size {@code m x m} as described in [1] (see above). * * @param d statistic * @param n sample size * @return H matrix * @throws MathIllegalArgumentException if fractional part is greater than 1 * @throws MathIllegalStateException if algorithm fails to convert {@code h} to a * {@link org.hipparchus.fraction.BigFraction} in expressing {@code d} as \((k * - h) / m\) for integer {@code k, m} and \(0 <= h < 1\). */ private FieldMatrix createExactH(double d, int n) throws MathIllegalArgumentException, MathIllegalStateException { final int k = (int) Math.ceil(n * d); final int m = 2 * k - 1; final double hDouble = k - n * d; if (hDouble >= 1) { throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE_BOUND_EXCLUDED, hDouble, 1.0); } BigFraction h = null; try { h = new BigFraction(hDouble, 1.0e-20, 10000); } catch (final MathIllegalStateException e1) { try { h = new BigFraction(hDouble, 1.0e-10, 10000); } catch (final MathIllegalStateException e2) { h = new BigFraction(hDouble, 1.0e-5, 10000); } } final BigFraction[][] Hdata = new BigFraction[m][m]; /* * Start by filling everything with either 0 or 1. */ for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { if (i - j + 1 < 0) { Hdata[i][j] = BigFraction.ZERO; } else { Hdata[i][j] = BigFraction.ONE; } } } /* * Setting up power-array to avoid calculating the same value twice: hPowers[0] = h^1 ... * hPowers[m-1] = h^m */ final BigFraction[] hPowers = new BigFraction[m]; hPowers[0] = h; for (int i = 1; i < m; ++i) { hPowers[i] = h.multiply(hPowers[i - 1]); } /* * First column and last row has special values (each other reversed). */ for (int i = 0; i < m; ++i) { Hdata[i][0] = Hdata[i][0].subtract(hPowers[i]); Hdata[m - 1][i] = Hdata[m - 1][i].subtract(hPowers[m - i - 1]); } /* * [1] states: "For 1/2 < h < 1 the bottom left element of the matrix should be (1 - 2*h^m + * (2h - 1)^m )/m!" Since 0 <= h < 1, then if h > 1/2 is sufficient to check: */ if (h.compareTo(BigFraction.ONE_HALF) == 1) { Hdata[m - 1][0] = Hdata[m - 1][0].add(h.multiply(2).subtract(1).pow(m)); } /* * Aside from the first column and last row, the (i, j)-th element is 1/(i - j + 1)! if i - * j + 1 >= 0, else 0. 1's and 0's are already put, so only division with (i - j + 1)! is * needed in the elements that have 1's. There is no need to calculate (i - j + 1)! and then * divide - small steps avoid overflows. Note that i - j + 1 > 0 <=> i + 1 > j instead of * j'ing all the way to m. Also note that it is started at g = 2 because dividing by 1 isn't * really necessary. */ for (int i = 0; i < m; ++i) { for (int j = 0; j < i + 1; ++j) { if (i - j + 1 > 0) { for (int g = 2; g <= i - j + 1; ++g) { Hdata[i][j] = Hdata[i][j].divide(g); } } } } return new Array2DRowFieldMatrix(BigFractionField.getInstance(), Hdata); } /*** * Creates {@code H} of size {@code m x m} as described in [1] (see above) * using double-precision. * * @param d statistic * @param n sample size * @return H matrix * @throws MathIllegalArgumentException if fractional part is greater than 1 */ private RealMatrix createRoundedH(double d, int n) throws MathIllegalArgumentException { final int k = (int) Math.ceil(n * d); final int m = 2 * k - 1; final double h = k - n * d; if (h >= 1) { throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE_BOUND_EXCLUDED, h, 1.0); } final double[][] Hdata = new double[m][m]; /* * Start by filling everything with either 0 or 1. */ for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { if (i - j + 1 < 0) { Hdata[i][j] = 0; } else { Hdata[i][j] = 1; } } } /* * Setting up power-array to avoid calculating the same value twice: hPowers[0] = h^1 ... * hPowers[m-1] = h^m */ final double[] hPowers = new double[m]; hPowers[0] = h; for (int i = 1; i < m; ++i) { hPowers[i] = h * hPowers[i - 1]; } /* * First column and last row has special values (each other reversed). */ for (int i = 0; i < m; ++i) { Hdata[i][0] = Hdata[i][0] - hPowers[i]; Hdata[m - 1][i] -= hPowers[m - i - 1]; } /* * [1] states: "For 1/2 < h < 1 the bottom left element of the matrix should be (1 - 2*h^m + * (2h - 1)^m )/m!" Since 0 <= h < 1, then if h > 1/2 is sufficient to check: */ if (Double.compare(h, 0.5) > 0) { Hdata[m - 1][0] += FastMath.pow(2 * h - 1, m); } /* * Aside from the first column and last row, the (i, j)-th element is 1/(i - j + 1)! if i - * j + 1 >= 0, else 0. 1's and 0's are already put, so only division with (i - j + 1)! is * needed in the elements that have 1's. There is no need to calculate (i - j + 1)! and then * divide - small steps avoid overflows. Note that i - j + 1 > 0 <=> i + 1 > j instead of * j'ing all the way to m. Also note that it is started at g = 2 because dividing by 1 isn't * really necessary. */ for (int i = 0; i < m; ++i) { for (int j = 0; j < i + 1; ++j) { if (i - j + 1 > 0) { for (int g = 2; g <= i - j + 1; ++g) { Hdata[i][j] /= g; } } } } return MatrixUtils.createRealMatrix(Hdata); } /** * Verifies that {@code array} has length at least 2. * * @param array array to test * @throws org.hipparchus.exception.NullArgumentException if array is null * @throws MathIllegalArgumentException if array is too short */ private void checkArray(double[] array) { MathUtils.checkNotNull(array); if (array.length < 2) { throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, array.length, 2); } } /** * Computes \( 1 + 2 \sum_{i=1}^\infty (-1)^i e^{-2 i^2 t^2} \) stopping when successive partial * sums are within {@code tolerance} of one another, or when {@code maxIterations} partial sums * have been computed. If the sum does not converge before {@code maxIterations} iterations a * {@link MathIllegalStateException} is thrown. * * @param t argument * @param tolerance Cauchy criterion for partial sums * @param maxIterations maximum number of partial sums to compute * @return Kolmogorov sum evaluated at t * @throws MathIllegalStateException if the series does not converge */ public double ksSum(double t, double tolerance, int maxIterations) { if (t == 0.0) { return 0.0; } // TODO: for small t (say less than 1), the alternative expansion in part 3 of [1] // from class javadoc should be used. final double x = -2 * t * t; int sign = -1; long i = 1; double partialSum = 0.5d; double delta = 1; while (delta > tolerance && i < maxIterations) { delta = FastMath.exp(x * i * i); partialSum += sign * delta; sign *= -1; i++; } if (i == maxIterations) { throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED, maxIterations); } return partialSum * 2; } /** * Given a d-statistic in the range [0, 1] and the two sample sizes n and m, * an integral d-statistic in the range [0, n*m] is calculated, that can be used for * comparison with other integral d-statistics. Depending whether {@code strict} is * {@code true} or not, the returned value divided by (n*m) is greater than * (resp greater than or equal to) the given d value (allowing some tolerance). * * @param d a d-statistic in the range [0, 1] * @param n first sample size * @param m second sample size * @param strict whether the returned value divided by (n*m) is allowed to be equal to d * @return the integral d-statistic in the range [0, n*m] */ private static long calculateIntegralD(double d, int n, int m, boolean strict) { final double tol = 1e-12; // d-values within tol of one another are considered equal long nm = n * (long)m; long upperBound = (long)FastMath.ceil((d - tol) * nm); long lowerBound = (long)FastMath.floor((d + tol) * nm); if (strict && lowerBound == upperBound) { return upperBound + 1l; } else { return upperBound; } } /** * Computes \(P(D_{n,m} > d)\) if {@code strict} is {@code true}; otherwise \(P(D_{n,m} \ge * d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic. See * {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\). *

* The returned probability is exact, implemented by unwinding the recursive function * definitions presented in [4] (class javadoc). *

* * @param d D-statistic value * @param n first sample size * @param m second sample size * @param strict whether or not the probability to compute is expressed as a strict inequality * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\) * greater than (resp. greater than or equal to) {@code d} */ public double exactP(double d, int n, int m, boolean strict) { return 1 - n(m, n, m, n, calculateIntegralD(d, m, n, strict), strict) / CombinatoricsUtils.binomialCoefficientDouble(n + m, m); } /** * Uses the Kolmogorov-Smirnov distribution to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\) * is the 2-sample Kolmogorov-Smirnov statistic. See * {@link #kolmogorovSmirnovStatistic(double[], double[])} for the definition of \(D_{n,m}\). *

* Specifically, what is returned is \(1 - k(d \sqrt{mn / (m + n)})\) where \(k(t) = 1 + 2 * \sum_{i=1}^\infty (-1)^i e^{-2 i^2 t^2}\). See {@link #ksSum(double, double, int)} for * details on how convergence of the sum is determined. This implementation passes {@code ksSum} * {@value #KS_SUM_CAUCHY_CRITERION} as {@code tolerance} and * {@value #MAXIMUM_PARTIAL_SUM_COUNT} as {@code maxIterations}. *

* * @param d D-statistic value * @param n first sample size * @param m second sample size * @return approximate probability that a randomly selected m-n partition of m + n generates * \(D_{n,m}\) greater than {@code d} */ public double approximateP(double d, int n, int m) { final double dm = m; final double dn = n; return 1 - ksSum(d * FastMath.sqrt((dm * dn) / (dm + dn)), KS_SUM_CAUCHY_CRITERION, MAXIMUM_PARTIAL_SUM_COUNT); } /** * Fills a boolean array randomly with a fixed number of {@code true} values. * The method uses a simplified version of the Fisher-Yates shuffle algorithm. * By processing first the {@code true} values followed by the remaining {@code false} values * less random numbers need to be generated. The method is optimized for the case * that the number of {@code true} values is larger than or equal to the number of * {@code false} values. * * @param b boolean array * @param numberOfTrueValues number of {@code true} values the boolean array should finally have * @param rng random data generator */ static void fillBooleanArrayRandomlyWithFixedNumberTrueValues(final boolean[] b, final int numberOfTrueValues, final RandomGenerator rng) { Arrays.fill(b, true); for (int k = numberOfTrueValues; k < b.length; k++) { final int r = rng.nextInt(k + 1); b[(b[r]) ? r : k] = false; } } /** * If there are no ties in the combined dataset formed from x and y, this * method is a no-op. If there are ties, a uniform random deviate in * (-minDelta / 2, minDelta / 2) - {0} is added to each value in x and y, where * minDelta is the minimum difference between unequal values in the combined * sample. A fixed seed is used to generate the jitter, so repeated activations * with the same input arrays result in the same values. * * NOTE: if there are ties in the data, this method overwrites the data in * x and y with the jittered values. * * @param x first sample * @param y second sample */ private void fixTies(double[] x, double[] y) { final double[] values = MathArrays.unique(MathArrays.concatenate(x,y)); if (values.length == x.length + y.length) { return; // There are no ties } // Find the smallest difference between values, or 1 if all values are the same double minDelta = 1; double prev = values[0]; double delta = 1; for (int i = 1; i < values.length; i++) { delta = prev - values[i]; if (delta < minDelta) { minDelta = delta; } prev = values[i]; } minDelta /= 2; // Add jitter using a fixed seed (so same arguments always give same results), // low-initialization-overhead generator gen.setSeed(100); // It is theoretically possible that jitter does not break ties, so repeat // until all ties are gone. Bound the loop and throw MIE if bound is exceeded. int ct = 0; boolean ties = true; do { jitter(x, minDelta); jitter(y, minDelta); ties = hasTies(x, y); ct++; } while (ties && ct < 1000); if (ties) { throw MathRuntimeException.createInternalError(); // Should never happen } } /** * Returns true iff there are ties in the combined sample * formed from x and y. * * @param x first sample * @param y second sample * @return true if x and y together contain ties */ private static boolean hasTies(double[] x, double[] y) { final HashSet values = new HashSet(); for (int i = 0; i < x.length; i++) { if (!values.add(x[i])) { return true; } } for (int i = 0; i < y.length; i++) { if (!values.add(y[i])) { return true; } } return false; } /** * Adds random jitter to {@code data} using uniform deviates between {@code -delta} and {@code delta}. *

* Note that jitter is applied in-place - i.e., the array * values are overwritten with the result of applying jitter.

* * @param data input/output data array - entries overwritten by the method * @param delta max magnitude of jitter * @throws NullPointerException if either of the parameters is null */ private void jitter(double[] data, double delta) { for (int i = 0; i < data.length; i++) { data[i] += gen.nextUniform(-delta, delta); } } /** * The function C(i, j) defined in [4] (class javadoc), formula (5.5). * defined to return 1 if |i/n - j/m| <= c; 0 otherwise. Here c is scaled up * and recoded as a long to avoid rounding errors in comparison tests, so what * is actually tested is |im - jn| <= cmn. * * @param i first path parameter * @param j second path paramter * @param m first sample size * @param n second sample size * @param cmn integral D-statistic (see {@link #calculateIntegralD(double, int, int, boolean)}) * @param strict whether or not the null hypothesis uses strict inequality * @return C(i,j) for given m, n, c */ private static int c(int i, int j, int m, int n, long cmn, boolean strict) { if (strict) { return FastMath.abs(i*(long)n - j*(long)m) <= cmn ? 1 : 0; } return FastMath.abs(i*(long)n - j*(long)m) < cmn ? 1 : 0; } /** * The function N(i, j) defined in [4] (class javadoc). * Returns the number of paths over the lattice {(i,j) : 0 <= i <= n, 0 <= j <= m} * from (0,0) to (i,j) satisfying C(h,k, m, n, c) = 1 for each (h,k) on the path. * The return value is integral, but subject to overflow, so it is maintained and * returned as a double. * * @param i first path parameter * @param j second path parameter * @param m first sample size * @param n second sample size * @param cnm integral D-statistic (see {@link #calculateIntegralD(double, int, int, boolean)}) * @param strict whether or not the null hypothesis uses strict inequality * @return number or paths to (i, j) from (0,0) representing D-values as large as c for given m, n */ private static double n(int i, int j, int m, int n, long cnm, boolean strict) { /* * Unwind the recursive definition given in [4]. * Compute n(1,1), n(1,2)...n(2,1), n(2,2)... up to n(i,j), one row at a time. * When n(i,*) are being computed, lag[] holds the values of n(i - 1, *). */ final double[] lag = new double[n]; double last = 0; for (int k = 0; k < n; k++) { lag[k] = c(0, k + 1, m, n, cnm, strict); } for (int k = 1; k <= i; k++) { last = c(k, 0, m, n, cnm, strict); for (int l = 1; l <= j; l++) { lag[l - 1] = c(k, l, m, n, cnm, strict) * (last + lag[l - 1]); last = lag[l - 1]; } } return last; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy