All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.inference.MannWhitneyUTest Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.hipparchus.stat.inference;

import org.hipparchus.distribution.continuous.NormalDistribution;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.exception.NullArgumentException;
import org.hipparchus.stat.ranking.NaNStrategy;
import org.hipparchus.stat.ranking.NaturalRanking;
import org.hipparchus.stat.ranking.TiesStrategy;
import org.hipparchus.util.FastMath;

/**
 * An implementation of the Mann-Whitney U test (also called Wilcoxon rank-sum test).
 */
public class MannWhitneyUTest {

    /** Ranking algorithm. */
    private NaturalRanking naturalRanking;

    /**
     * Create a test instance using where NaN's are left in place and ties get
     * the average of applicable ranks. Use this unless you are very sure of
     * what you are doing.
     */
    public MannWhitneyUTest() {
        naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
                                            TiesStrategy.AVERAGE);
    }

    /**
     * Create a test instance using the given strategies for NaN's and ties.
     * Only use this if you are sure of what you are doing.
     *
     * @param nanStrategy specifies the strategy that should be used for Double.NaN's
     * @param tiesStrategy specifies the strategy that should be used for ties
     */
    public MannWhitneyUTest(final NaNStrategy nanStrategy,
                            final TiesStrategy tiesStrategy) {
        naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
    }

    /**
     * Ensures that the provided arrays fulfills the assumptions.
     *
     * @param x first sample
     * @param y second sample
     * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
     * @throws MathIllegalArgumentException if {@code x} or {@code y} are zero-length.
     */
    private void ensureDataConformance(final double[] x, final double[] y)
        throws MathIllegalArgumentException, NullArgumentException {

        if (x == null ||
            y == null) {
            throw new NullArgumentException();
        }
        if (x.length == 0 ||
            y.length == 0) {
            throw new MathIllegalArgumentException(LocalizedCoreFormats.NO_DATA);
        }
    }

    /**
     * Concatenate the samples into one array.
     *
     * @param x first sample
     * @param y second sample
     * @return concatenated array
     */
    private double[] concatenateSamples(final double[] x, final double[] y) {
        final double[] z = new double[x.length + y.length];

        System.arraycopy(x, 0, z, 0, x.length);
        System.arraycopy(y, 0, z, x.length, y.length);

        return z;
    }

    /**
     * Computes the  Mann-Whitney
     * U statistic comparing mean for two independent samples possibly of
     * different length.
     * 

* This statistic can be used to perform a Mann-Whitney U test evaluating * the null hypothesis that the two independent samples has equal mean. *

* Let Xi denote the i'th individual of the first sample and * Yj the j'th individual in the second sample. Note that the * samples would often have different length. *

* Preconditions: *

    *
  • All observations in the two samples are independent.
  • *
  • The observations are at least ordinal (continuous are also ordinal).
  • *
* * @param x the first sample * @param y the second sample * @return Mann-Whitney U statistic (maximum of Ux and Uy) * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. * @throws MathIllegalArgumentException if {@code x} or {@code y} are zero-length. */ public double mannWhitneyU(final double[] x, final double[] y) throws MathIllegalArgumentException, NullArgumentException { ensureDataConformance(x, y); final double[] z = concatenateSamples(x, y); final double[] ranks = naturalRanking.rank(z); double sumRankX = 0; /* * The ranks for x is in the first x.length entries in ranks because x * is in the first x.length entries in z */ for (int i = 0; i < x.length; ++i) { sumRankX += ranks[i]; } /* * U1 = R1 - (n1 * (n1 + 1)) / 2 where R1 is sum of ranks for sample 1, * e.g. x, n1 is the number of observations in sample 1. */ final double U1 = sumRankX - ((long) x.length * (x.length + 1)) / 2; /* * It can be shown that U1 + U2 = n1 * n2 */ final double U2 = (long) x.length * y.length - U1; return FastMath.max(U1, U2); } /** * @param Umin smallest Mann-Whitney U value * @param n1 number of subjects in first sample * @param n2 number of subjects in second sample * @return two-sided asymptotic p-value * @throws MathIllegalStateException if the p-value can not be computed * due to a convergence error * @throws MathIllegalStateException if the maximum number of * iterations is exceeded */ private double calculateAsymptoticPValue(final double Umin, final int n1, final int n2) throws MathIllegalStateException { /* long multiplication to avoid overflow (double not used due to efficiency * and to avoid precision loss) */ final long n1n2prod = (long) n1 * n2; // http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation final double EU = n1n2prod / 2.0; final double VarU = n1n2prod * (n1 + n2 + 1) / 12.0; final double z = (Umin - EU) / FastMath.sqrt(VarU); // No try-catch or advertised exception because args are valid final NormalDistribution standardNormal = new NormalDistribution(0, 1); return 2 * standardNormal.cumulativeProbability(z); } /** * Returns the asymptotic observed significance level, or * * p-value, associated with a * Mann-Whitney * U statistic comparing mean for two independent samples. *

* Let Xi denote the i'th individual of the first sample and * Yj the j'th individual in the second sample. Note that the * samples would often have different length. *

* Preconditions: *

    *
  • All observations in the two samples are independent.
  • *
  • The observations are at least ordinal (continuous are also ordinal).
  • *
*

* Ties give rise to biased variance at the moment. See e.g. * * http://mlsc.lboro.ac.uk/resources/statistics/Mannwhitney.pdf. * * @param x the first sample * @param y the second sample * @return asymptotic p-value * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. * @throws MathIllegalArgumentException if {@code x} or {@code y} are zero-length. * @throws MathIllegalStateException if the p-value can not be computed due to a * convergence error * @throws MathIllegalStateException if the maximum number of iterations * is exceeded */ public double mannWhitneyUTest(final double[] x, final double[] y) throws MathIllegalArgumentException, NullArgumentException, MathIllegalStateException { ensureDataConformance(x, y); final double Umax = mannWhitneyU(x, y); /* * It can be shown that U1 + U2 = n1 * n2 */ final double Umin = (long) x.length * y.length - Umax; return calculateAsymptoticPValue(Umin, x.length, y.length); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy