All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.descriptive.MultivariateSummaryStatistics Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.stat.descriptive;

import java.io.Serializable;
import java.util.Arrays;

import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.stat.descriptive.moment.GeometricMean;
import org.hipparchus.stat.descriptive.moment.Mean;
import org.hipparchus.stat.descriptive.rank.Max;
import org.hipparchus.stat.descriptive.rank.Min;
import org.hipparchus.stat.descriptive.summary.Sum;
import org.hipparchus.stat.descriptive.summary.SumOfLogs;
import org.hipparchus.stat.descriptive.summary.SumOfSquares;
import org.hipparchus.stat.descriptive.vector.VectorialCovariance;
import org.hipparchus.stat.descriptive.vector.VectorialStorelessStatistic;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.MathUtils;

/**
 * Computes summary statistics for a stream of n-tuples added using the
 * {@link #addValue(double[]) addValue} method. The data values are not stored
 * in memory, so this class can be used to compute statistics for very large
 * n-tuple streams.
 * 

* To compute statistics for a stream of n-tuples, construct a * {@link MultivariateSummaryStatistics} instance with dimension n and then use * {@link #addValue(double[])} to add n-tuples. The getXxx * methods where Xxx is a statistic return an array of double * values, where for i = 0,...,n-1 the ith array element * is the value of the given statistic for data range consisting of the ith * element of each of the input n-tuples. For example, if addValue is * called with actual parameters {0, 1, 2}, then {3, 4, 5} and finally {6, 7, 8}, * getSum will return a three-element array with values {0+3+6, 1+4+7, 2+5+8} *

* Note: This class is not thread-safe. */ public class MultivariateSummaryStatistics implements StatisticalMultivariateSummary, Serializable { /** Serialization UID */ private static final long serialVersionUID = 20160424L; /** Dimension of the data. */ private final int k; /** Sum statistic implementation */ private final StorelessMultivariateStatistic sumImpl; /** Sum of squares statistic implementation */ private final StorelessMultivariateStatistic sumSqImpl; /** Minimum statistic implementation */ private final StorelessMultivariateStatistic minImpl; /** Maximum statistic implementation */ private final StorelessMultivariateStatistic maxImpl; /** Sum of log statistic implementation */ private final StorelessMultivariateStatistic sumLogImpl; /** Geometric mean statistic implementation */ private final StorelessMultivariateStatistic geoMeanImpl; /** Mean statistic implementation */ private final StorelessMultivariateStatistic meanImpl; /** Covariance statistic implementation */ private final VectorialCovariance covarianceImpl; /** Count of values that have been added */ private long n; /** * Construct a MultivariateSummaryStatistics instance for the given * dimension. The returned instance will compute the unbiased sample * covariance. *

* The returned instance is not thread-safe. * * @param dimension dimension of the data */ public MultivariateSummaryStatistics(int dimension) { this(dimension, true); } /** * Construct a MultivariateSummaryStatistics instance for the given * dimension. *

* The returned instance is not thread-safe. * * @param dimension dimension of the data * @param covarianceBiasCorrection if true, the returned instance will compute * the unbiased sample covariance, otherwise the population covariance */ public MultivariateSummaryStatistics(int dimension, boolean covarianceBiasCorrection) { this.k = dimension; sumImpl = new VectorialStorelessStatistic(k, new Sum()); sumSqImpl = new VectorialStorelessStatistic(k, new SumOfSquares()); minImpl = new VectorialStorelessStatistic(k, new Min()); maxImpl = new VectorialStorelessStatistic(k, new Max()); sumLogImpl = new VectorialStorelessStatistic(k, new SumOfLogs()); geoMeanImpl = new VectorialStorelessStatistic(k, new GeometricMean()); meanImpl = new VectorialStorelessStatistic(k, new Mean()); covarianceImpl = new VectorialCovariance(k, covarianceBiasCorrection); } /** * Add an n-tuple to the data * * @param value the n-tuple to add * @throws MathIllegalArgumentException if the array is null or the length * of the array does not match the one used at construction */ public void addValue(double[] value) throws MathIllegalArgumentException { MathUtils.checkNotNull(value, LocalizedCoreFormats.INPUT_ARRAY); MathUtils.checkDimension(value.length, k); sumImpl.increment(value); sumSqImpl.increment(value); minImpl.increment(value); maxImpl.increment(value); sumLogImpl.increment(value); geoMeanImpl.increment(value); meanImpl.increment(value); covarianceImpl.increment(value); n++; } /** * Resets all statistics and storage. */ public void clear() { this.n = 0; minImpl.clear(); maxImpl.clear(); sumImpl.clear(); sumLogImpl.clear(); sumSqImpl.clear(); geoMeanImpl.clear(); meanImpl.clear(); covarianceImpl.clear(); } /** {@inheritDoc} **/ @Override public int getDimension() { return k; } /** {@inheritDoc} **/ @Override public long getN() { return n; } /** {@inheritDoc} **/ @Override public double[] getSum() { return sumImpl.getResult(); } /** {@inheritDoc} **/ @Override public double[] getSumSq() { return sumSqImpl.getResult(); } /** {@inheritDoc} **/ @Override public double[] getSumLog() { return sumLogImpl.getResult(); } /** {@inheritDoc} **/ @Override public double[] getMean() { return meanImpl.getResult(); } /** {@inheritDoc} **/ @Override public RealMatrix getCovariance() { return covarianceImpl.getResult(); } /** {@inheritDoc} **/ @Override public double[] getMax() { return maxImpl.getResult(); } /** {@inheritDoc} **/ @Override public double[] getMin() { return minImpl.getResult(); } /** {@inheritDoc} **/ @Override public double[] getGeometricMean() { return geoMeanImpl.getResult(); } /** * Returns an array whose ith entry is the standard deviation of the * ith entries of the arrays that have been added using * {@link #addValue(double[])} * * @return the array of component standard deviations */ @Override public double[] getStandardDeviation() { double[] stdDev = new double[k]; if (getN() < 1) { Arrays.fill(stdDev, Double.NaN); } else if (getN() < 2) { Arrays.fill(stdDev, 0.0); } else { RealMatrix matrix = getCovariance(); for (int i = 0; i < k; ++i) { stdDev[i] = FastMath.sqrt(matrix.getEntry(i, i)); } } return stdDev; } /** * Generates a text report displaying * summary statistics from values that * have been added. * @return String with line feeds displaying statistics */ @Override public String toString() { final String separator = ", "; final String suffix = System.getProperty("line.separator"); StringBuilder outBuffer = new StringBuilder(200); // the size is just a wild guess outBuffer.append("MultivariateSummaryStatistics:").append(suffix). append("n: ").append(getN()).append(suffix); append(outBuffer, getMin(), "min: ", separator, suffix); append(outBuffer, getMax(), "max: ", separator, suffix); append(outBuffer, getMean(), "mean: ", separator, suffix); append(outBuffer, getGeometricMean(), "geometric mean: ", separator, suffix); append(outBuffer, getSumSq(), "sum of squares: ", separator, suffix); append(outBuffer, getSumLog(), "sum of logarithms: ", separator, suffix); append(outBuffer, getStandardDeviation(), "standard deviation: ", separator, suffix); outBuffer.append("covariance: ").append(getCovariance().toString()).append(suffix); return outBuffer.toString(); } /** * Append a text representation of an array to a buffer. * @param buffer buffer to fill * @param data data array * @param prefix text prefix * @param separator elements separator * @param suffix text suffix */ private void append(StringBuilder buffer, double[] data, String prefix, String separator, String suffix) { buffer.append(prefix); for (int i = 0; i < data.length; ++i) { if (i > 0) { buffer.append(separator); } buffer.append(data[i]); } buffer.append(suffix); } /** * Returns true iff object is a MultivariateSummaryStatistics * instance and all statistics have the same values as this. * @param object the object to test equality against. * @return true if object equals this */ @Override public boolean equals(Object object) { if (object == this) { return true; } if (!(object instanceof MultivariateSummaryStatistics)) { return false; } MultivariateSummaryStatistics other = (MultivariateSummaryStatistics) object; return other.getN() == getN() && MathArrays.equalsIncludingNaN(other.getGeometricMean(), getGeometricMean()) && MathArrays.equalsIncludingNaN(other.getMax(), getMax()) && MathArrays.equalsIncludingNaN(other.getMean(), getMean()) && MathArrays.equalsIncludingNaN(other.getMin(), getMin()) && MathArrays.equalsIncludingNaN(other.getSum(), getSum()) && MathArrays.equalsIncludingNaN(other.getSumSq(), getSumSq()) && MathArrays.equalsIncludingNaN(other.getSumLog(), getSumLog()) && other.getCovariance().equals(getCovariance()); } /** * Returns hash code based on values of statistics * * @return hash code */ @Override public int hashCode() { int result = 31 + MathUtils.hash(getN()); result = result * 31 + MathUtils.hash(getGeometricMean()); result = result * 31 + MathUtils.hash(getMax()); result = result * 31 + MathUtils.hash(getMean()); result = result * 31 + MathUtils.hash(getMin()); result = result * 31 + MathUtils.hash(getSum()); result = result * 31 + MathUtils.hash(getSumSq()); result = result * 31 + MathUtils.hash(getSumLog()); result = result * 31 + getCovariance().hashCode(); return result; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy