All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.fitting.EmpiricalDistribution Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */

package org.hipparchus.stat.fitting;

import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.URL;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.util.ArrayList;
import java.util.List;

import org.hipparchus.distribution.RealDistribution;
import org.hipparchus.distribution.continuous.AbstractRealDistribution;
import org.hipparchus.distribution.continuous.ConstantRealDistribution;
import org.hipparchus.distribution.continuous.NormalDistribution;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.exception.NullArgumentException;
import org.hipparchus.random.RandomDataGenerator;
import org.hipparchus.random.RandomGenerator;
import org.hipparchus.stat.descriptive.StatisticalSummary;
import org.hipparchus.stat.descriptive.StreamingStatistics;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;

/**
 * 

Represents an * empirical probability distribution -- a probability distribution derived * from observed data without making any assumptions about the functional form * of the population distribution that the data come from.

* *

An EmpiricalDistribution maintains data structures, called * distribution digests, that describe empirical distributions and * support the following operations:

    *
  • loading the distribution from a file of observed data values
  • *
  • dividing the input data into "bin ranges" and reporting bin frequency * counts (data for histogram)
  • *
  • reporting univariate statistics describing the full set of data values * as well as the observations within each bin
  • *
  • generating random values from the distribution
  • *
* Applications can use EmpiricalDistribution to build grouped * frequency histograms representing the input data or to generate random values * "like" those in the input file -- i.e., the values generated will follow the * distribution of the values in the file.

* *

The implementation uses what amounts to the * * Variable Kernel Method with Gaussian smoothing:

* Digesting the input file *

  1. Pass the file once to compute min and max.
  2. *
  3. Divide the range from min-max into binCount "bins."
  4. *
  5. Pass the data file again, computing bin counts and univariate * statistics (mean, std dev.) for each of the bins
  6. *
  7. Divide the interval (0,1) into subintervals associated with the bins, * with the length of a bin's subinterval proportional to its count.
* Generating random values from the distribution
    *
  1. Generate a uniformly distributed value in (0,1)
  2. *
  3. Select the subinterval to which the value belongs. *
  4. Generate a random Gaussian value with mean = mean of the associated * bin and std dev = std dev of associated bin.

* *

EmpiricalDistribution implements the {@link RealDistribution} interface * as follows. Given x within the range of values in the dataset, let B * be the bin containing x and let K be the within-bin kernel for B. Let P(B-) * be the sum of the probabilities of the bins below B and let K(B) be the * mass of B under K (i.e., the integral of the kernel density over B). Then * set P(X < x) = P(B-) + P(B) * K(x) / K(B) where K(x) is the kernel distribution * evaluated at x. This results in a cdf that matches the grouped frequency * distribution at the bin endpoints and interpolates within bins using * within-bin kernels.

* *USAGE NOTES:
    *
  • The binCount is set by default to 1000. A good rule of thumb * is to set the bin count to approximately the length of the input file divided * by 10.
  • *
  • The input file must be a plain text file containing one valid numeric * entry per line.
  • *

* */ public class EmpiricalDistribution extends AbstractRealDistribution { /** Default bin count */ public static final int DEFAULT_BIN_COUNT = 1000; /** Character set for file input */ private static final String FILE_CHARSET = "US-ASCII"; /** Serializable version identifier */ private static final long serialVersionUID = 5729073523949762654L; /** RandomDataGenerator instance to use in repeated calls to getNext() */ protected final RandomDataGenerator randomData; /** List of SummaryStatistics objects characterizing the bins */ private final List binStats; /** Sample statistics */ private StreamingStatistics sampleStats; /** Max loaded value */ private double max = Double.NEGATIVE_INFINITY; /** Min loaded value */ private double min = Double.POSITIVE_INFINITY; /** Grid size */ private double delta; /** number of bins */ private final int binCount; /** is the distribution loaded? */ private boolean loaded; /** upper bounds of subintervals in (0,1) "belonging" to the bins */ private double[] upperBounds; /** * Creates a new EmpiricalDistribution with the default bin count. */ public EmpiricalDistribution() { this(DEFAULT_BIN_COUNT); } /** * Creates a new EmpiricalDistribution with the specified bin count. * * @param binCount number of bins. Must be strictly positive. * @throws MathIllegalArgumentException if {@code binCount <= 0}. */ public EmpiricalDistribution(int binCount) { this(binCount, new RandomDataGenerator()); } /** * Creates a new EmpiricalDistribution with the specified bin count using the * provided {@link RandomGenerator} as the source of random data. * * @param binCount number of bins. Must be strictly positive. * @param generator random data generator (may be null, resulting in default JDK generator) * @throws MathIllegalArgumentException if {@code binCount <= 0}. */ public EmpiricalDistribution(int binCount, RandomGenerator generator) { this(binCount, RandomDataGenerator.of(generator)); } /** * Creates a new EmpiricalDistribution with default bin count using the * provided {@link RandomGenerator} as the source of random data. * * @param generator random data generator (may be null, resulting in default JDK generator) */ public EmpiricalDistribution(RandomGenerator generator) { this(DEFAULT_BIN_COUNT, generator); } /** * Private constructor to allow lazy initialisation of the RNG contained * in the {@link #randomData} instance variable. * * @param binCount number of bins. Must be strictly positive. * @param randomData Random data generator. * @throws MathIllegalArgumentException if {@code binCount <= 0}. */ private EmpiricalDistribution(int binCount, RandomDataGenerator randomData) { if (binCount <= 0) { throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL_BOUND_EXCLUDED, binCount, 0); } this.binCount = binCount; this.randomData = randomData; binStats = new ArrayList<>(); } /** * Computes the empirical distribution from the provided * array of numbers. * * @param in the input data array * @exception NullArgumentException if in is null */ public void load(double[] in) throws NullArgumentException { DataAdapter da = new ArrayDataAdapter(in); try { da.computeStats(); // new adapter for the second pass fillBinStats(new ArrayDataAdapter(in)); } catch (IOException ex) { // Can't happen throw MathRuntimeException.createInternalError(); } loaded = true; } /** * Computes the empirical distribution using data read from a URL. * *

The input file must be an ASCII text file containing one * valid numeric entry per line.

* * @param url url of the input file * * @throws IOException if an IO error occurs * @throws NullArgumentException if url is null * @throws MathIllegalArgumentException if URL contains no data */ public void load(URL url) throws IOException, MathIllegalArgumentException, NullArgumentException { MathUtils.checkNotNull(url); Charset charset = Charset.forName(FILE_CHARSET); BufferedReader in = new BufferedReader(new InputStreamReader(url.openStream(), charset)); try { DataAdapter da = new StreamDataAdapter(in); da.computeStats(); if (sampleStats.getN() == 0) { throw new MathIllegalArgumentException(LocalizedCoreFormats.URL_CONTAINS_NO_DATA, url); } // new adapter for the second pass in = new BufferedReader(new InputStreamReader(url.openStream(), charset)); fillBinStats(new StreamDataAdapter(in)); loaded = true; } finally { try { in.close(); } catch (IOException ex) { //NOPMD // ignore } } } /** * Computes the empirical distribution from the input file. * *

The input file must be an ASCII text file containing one * valid numeric entry per line.

* * @param file the input file * @throws IOException if an IO error occurs * @throws NullArgumentException if file is null */ public void load(File file) throws IOException, NullArgumentException { MathUtils.checkNotNull(file); Charset charset = Charset.forName(FILE_CHARSET); try (InputStream is1 = Files.newInputStream(file.toPath()); BufferedReader in1 = new BufferedReader(new InputStreamReader(is1, charset))) { DataAdapter da = new StreamDataAdapter(in1); da.computeStats(); // new adapter for second pass try (InputStream is2 = Files.newInputStream(file.toPath()); BufferedReader in2 = new BufferedReader(new InputStreamReader(is2, charset))) { fillBinStats(new StreamDataAdapter(in2)); } loaded = true; } } /** * Provides methods for computing sampleStats and * beanStats abstracting the source of data. */ private abstract class DataAdapter{ /** * Compute bin stats. * * @throws IOException if an error occurs computing bin stats */ public abstract void computeBinStats() throws IOException; /** * Compute sample statistics. * * @throws IOException if an error occurs computing sample stats */ public abstract void computeStats() throws IOException; } /** * DataAdapter for data provided through some input stream */ private class StreamDataAdapter extends DataAdapter{ /** Input stream providing access to the data */ private BufferedReader inputStream; /** * Create a StreamDataAdapter from a BufferedReader * * @param in BufferedReader input stream */ StreamDataAdapter(BufferedReader in){ super(); inputStream = in; } /** {@inheritDoc} */ @Override public void computeBinStats() throws IOException { double val = 0.0d; for (String str = inputStream.readLine(); str != null; str = inputStream.readLine()) { val = Double.parseDouble(str); StreamingStatistics stats = binStats.get(findBin(val)); stats.addValue(val); } inputStream.close(); inputStream = null; } /** {@inheritDoc} */ @Override public void computeStats() throws IOException { double val = 0.0; sampleStats = new StreamingStatistics(); for (String str = inputStream.readLine(); str != null; str = inputStream.readLine()) { val = Double.parseDouble(str); sampleStats.addValue(val); } inputStream.close(); inputStream = null; } } /** * DataAdapter for data provided as array of doubles. */ private class ArrayDataAdapter extends DataAdapter { /** Array of input data values */ private final double[] inputArray; /** * Construct an ArrayDataAdapter from a double[] array * * @param in double[] array holding the data, a reference to the array will be stored * @throws NullArgumentException if in is null */ ArrayDataAdapter(double[] in) throws NullArgumentException { // NOPMD - storing a reference to the array is intentional and documented here super(); MathUtils.checkNotNull(in); inputArray = in; } /** {@inheritDoc} */ @Override public void computeStats() throws IOException { sampleStats = new StreamingStatistics(); for (int i = 0; i < inputArray.length; i++) { sampleStats.addValue(inputArray[i]); } } /** {@inheritDoc} */ @Override public void computeBinStats() throws IOException { for (int i = 0; i < inputArray.length; i++) { StreamingStatistics stats = binStats.get(findBin(inputArray[i])); stats.addValue(inputArray[i]); } } } /** * Fills binStats array (second pass through data file). * * @param da object providing access to the data * @throws IOException if an IO error occurs */ private void fillBinStats(final DataAdapter da) throws IOException { // Set up grid min = sampleStats.getMin(); max = sampleStats.getMax(); delta = (max - min)/binCount; // Initialize binStats ArrayList if (!binStats.isEmpty()) { binStats.clear(); } for (int i = 0; i < binCount; i++) { StreamingStatistics stats = new StreamingStatistics(); binStats.add(i,stats); } // Filling data in binStats Array da.computeBinStats(); // Assign upperBounds based on bin counts upperBounds = new double[binCount]; upperBounds[0] = ((double) binStats.get(0).getN()) / (double) sampleStats.getN(); for (int i = 1; i < binCount-1; i++) { upperBounds[i] = upperBounds[i-1] + ((double) binStats.get(i).getN()) / (double) sampleStats.getN(); } upperBounds[binCount-1] = 1.0d; } /** * Returns the index of the bin to which the given value belongs * * @param value the value whose bin we are trying to find * @return the index of the bin containing the value */ private int findBin(double value) { return FastMath.min( FastMath.max((int) FastMath.ceil((value - min) / delta) - 1, 0), binCount - 1); } /** * Generates a random value from this distribution. * Preconditions:
    *
  • the distribution must be loaded before invoking this method
* @return the random value. * @throws MathIllegalStateException if the distribution has not been loaded */ public double getNextValue() throws MathIllegalStateException { if (!loaded) { throw new MathIllegalStateException(LocalizedCoreFormats.DISTRIBUTION_NOT_LOADED); } return inverseCumulativeProbability(randomData.nextDouble()); } /** * Returns a {@link StatisticalSummary} describing this distribution. * Preconditions:
    *
  • the distribution must be loaded before invoking this method
* * @return the sample statistics * @throws IllegalStateException if the distribution has not been loaded */ public StatisticalSummary getSampleStats() { return sampleStats; } /** * Returns the number of bins. * * @return the number of bins. */ public int getBinCount() { return binCount; } /** * Returns a List of {@link StreamingStatistics} instances containing * statistics describing the values in each of the bins. The list is * indexed on the bin number. * * @return List of bin statistics. */ public List getBinStats() { return binStats; } /** *

Returns a fresh copy of the array of upper bounds for the bins. * Bins are:
* [min,upperBounds[0]],(upperBounds[0],upperBounds[1]],..., * (upperBounds[binCount-2], upperBounds[binCount-1] = max].

* * @return array of bin upper bounds */ public double[] getUpperBounds() { double[] binUpperBounds = new double[binCount]; for (int i = 0; i < binCount - 1; i++) { binUpperBounds[i] = min + delta * (i + 1); } binUpperBounds[binCount - 1] = max; return binUpperBounds; } /** *

Returns a fresh copy of the array of upper bounds of the subintervals * of [0,1] used in generating data from the empirical distribution. * Subintervals correspond to bins with lengths proportional to bin counts.

* * Preconditions:
    *
  • the distribution must be loaded before invoking this method
* * @return array of upper bounds of subintervals used in data generation * @throws NullPointerException unless a {@code load} method has been * called beforehand. */ public double[] getGeneratorUpperBounds() { int len = upperBounds.length; double[] out = new double[len]; System.arraycopy(upperBounds, 0, out, 0, len); return out; } /** * Property indicating whether or not the distribution has been loaded. * * @return true if the distribution has been loaded */ public boolean isLoaded() { return loaded; } /** * Reseeds the random number generator used by {@link #getNextValue()}. * * @param seed random generator seed */ public void reSeed(long seed) { randomData.setSeed(seed); } // Distribution methods --------------------------- /** * {@inheritDoc} * *

Returns the kernel density normalized so that its integral over each bin * equals the bin mass.

* *

Algorithm description:

    *
  1. Find the bin B that x belongs to.
  2. *
  3. Compute K(B) = the mass of B with respect to the within-bin kernel (i.e., the * integral of the kernel density over B).
  4. *
  5. Return k(x) * P(B) / K(B), where k is the within-bin kernel density * and P(B) is the mass of B.

*/ @Override public double density(double x) { if (x < min || x > max) { return 0d; } final int binIndex = findBin(x); final RealDistribution kernel = getKernel(binStats.get(binIndex)); return kernel.density(x) * pB(binIndex) / kB(binIndex); } /** * {@inheritDoc} * *

Algorithm description:

    *
  1. Find the bin B that x belongs to.
  2. *
  3. Compute P(B) = the mass of B and P(B-) = the combined mass of the bins below B.
  4. *
  5. Compute K(B) = the probability mass of B with respect to the within-bin kernel * and K(B-) = the kernel distribution evaluated at the lower endpoint of B
  6. *
  7. Return P(B-) + P(B) * [K(x) - K(B-)] / K(B) where * K(x) is the within-bin kernel distribution function evaluated at x.
* If K is a constant distribution, we return P(B-) + P(B) (counting the full * mass of B).

* */ @Override public double cumulativeProbability(double x) { if (x < min) { return 0d; } else if (x >= max) { return 1d; } final int binIndex = findBin(x); final double pBminus = pBminus(binIndex); final double pB = pB(binIndex); final RealDistribution kernel = k(x); if (kernel instanceof ConstantRealDistribution) { if (x < kernel.getNumericalMean()) { return pBminus; } else { return pBminus + pB; } } final double[] binBounds = getUpperBounds(); final double kB = kB(binIndex); final double lower = binIndex == 0 ? min : binBounds[binIndex - 1]; final double withinBinCum = (kernel.cumulativeProbability(x) - kernel.cumulativeProbability(lower)) / kB; return pBminus + pB * withinBinCum; } /** * {@inheritDoc} * *

Algorithm description:

    *
  1. Find the smallest i such that the sum of the masses of the bins * through i is at least p.
  2. *
  3. * Let K be the within-bin kernel distribution for bin i.
    * Let K(B) be the mass of B under K.
    * Let K(B-) be K evaluated at the lower endpoint of B (the combined * mass of the bins below B under K).
    * Let P(B) be the probability of bin i.
    * Let P(B-) be the sum of the bin masses below bin i.
    * Let pCrit = p - P(B-)
    *
  4. Return the inverse of K evaluated at
    * K(B-) + pCrit * K(B) / P(B)
  5. *

* */ @Override public double inverseCumulativeProbability(final double p) throws MathIllegalArgumentException { MathUtils.checkRangeInclusive(p, 0, 1); if (p == 0.0) { return getSupportLowerBound(); } if (p == 1.0) { return getSupportUpperBound(); } int i = 0; while (cumBinP(i) < p) { i++; } final RealDistribution kernel = getKernel(binStats.get(i)); final double kB = kB(i); final double[] binBounds = getUpperBounds(); final double lower = i == 0 ? min : binBounds[i - 1]; final double kBminus = kernel.cumulativeProbability(lower); final double pB = pB(i); final double pBminus = pBminus(i); final double pCrit = p - pBminus; if (pCrit <= 0) { return lower; } return kernel.inverseCumulativeProbability(kBminus + pCrit * kB / pB); } /** * {@inheritDoc} */ @Override public double getNumericalMean() { return sampleStats.getMean(); } /** * {@inheritDoc} */ @Override public double getNumericalVariance() { return sampleStats.getVariance(); } /** * {@inheritDoc} */ @Override public double getSupportLowerBound() { return min; } /** * {@inheritDoc} */ @Override public double getSupportUpperBound() { return max; } /** * {@inheritDoc} */ @Override public boolean isSupportConnected() { return true; } /** * Reseed the underlying PRNG. * * @param seed new seed value */ public void reseedRandomGenerator(long seed) { randomData.setSeed(seed); } /** * The probability of bin i. * * @param i the index of the bin * @return the probability that selection begins in bin i */ private double pB(int i) { return i == 0 ? upperBounds[0] : upperBounds[i] - upperBounds[i - 1]; } /** * The combined probability of the bins up to but not including bin i. * * @param i the index of the bin * @return the probability that selection begins in a bin below bin i. */ private double pBminus(int i) { return i == 0 ? 0 : upperBounds[i - 1]; } /** * Mass of bin i under the within-bin kernel of the bin. * * @param i index of the bin * @return the difference in the within-bin kernel cdf between the * upper and lower endpoints of bin i */ private double kB(int i) { final double[] binBounds = getUpperBounds(); final RealDistribution kernel = getKernel(binStats.get(i)); return i == 0 ? kernel.probability(min, binBounds[0]) : kernel.probability(binBounds[i - 1], binBounds[i]); } /** * The within-bin kernel of the bin that x belongs to. * * @param x the value to locate within a bin * @return the within-bin kernel of the bin containing x */ private RealDistribution k(double x) { final int binIndex = findBin(x); return getKernel(binStats.get(binIndex)); } /** * The combined probability of the bins up to and including binIndex. * * @param binIndex maximum bin index * @return sum of the probabilities of bins through binIndex */ private double cumBinP(int binIndex) { return upperBounds[binIndex]; } /** * The within-bin smoothing kernel. Returns a Gaussian distribution * parameterized by {@code bStats}, unless the bin contains less than 2 * observations, in which case a constant distribution is returned. * * @param bStats summary statistics for the bin * @return within-bin kernel parameterized by bStats */ protected RealDistribution getKernel(StreamingStatistics bStats) { if (bStats.getN() < 2 || bStats.getVariance() == 0) { return new ConstantRealDistribution(bStats.getMean()); } else { return new NormalDistribution(bStats.getMean(), bStats.getStandardDeviation()); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy