All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.inference.WilcoxonSignedRankTest Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.stat.inference;

import java.util.ArrayList;
import java.util.List;

import org.hipparchus.distribution.continuous.NormalDistribution;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.exception.NullArgumentException;
import org.hipparchus.stat.ranking.NaNStrategy;
import org.hipparchus.stat.ranking.NaturalRanking;
import org.hipparchus.stat.ranking.TiesStrategy;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;

/**
 * An implementation of the Wilcoxon signed-rank test.
 *
 * This implementation currently handles only paired (equal length) samples
 * and discards tied pairs from the analysis. The latter behavior differs from
 * the R implementation of wilcox.test and corresponds to the "wilcox"
 * zero_method configurable in scipy.stats.wilcoxon.
 */
public class WilcoxonSignedRankTest {

    /** Ranking algorithm. */
    private final NaturalRanking naturalRanking;

    /**
     * Create a test instance where NaN's are left in place and ties get the
     * average of applicable ranks.
     */
    public WilcoxonSignedRankTest() {
        naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
                                            TiesStrategy.AVERAGE);
    }

    /**
     * Create a test instance using the given strategies for NaN's and ties.
     *
     * @param nanStrategy specifies the strategy that should be used for
     *        Double.NaN's
     * @param tiesStrategy specifies the strategy that should be used for ties
     */
    public WilcoxonSignedRankTest(final NaNStrategy nanStrategy,
                                  final TiesStrategy tiesStrategy) {
        naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
    }

    /**
     * Ensures that the provided arrays fulfills the assumptions. Also computes
     * and returns the number of tied pairs (i.e., zero differences).
     *
     * @param x first sample
     * @param y second sample
     * @return the number of indices where x[i] == y[i]
     * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
     * @throws MathIllegalArgumentException if {@code x} or {@code y} are
     *         zero-length
     * @throws MathIllegalArgumentException if {@code x} and {@code y} do not
     *         have the same length.
     * @throws MathIllegalArgumentException if all pairs are tied (i.e., if no
     *         data remains when tied pairs have been removed.
     */
    private int ensureDataConformance(final double[] x, final double[] y)
        throws MathIllegalArgumentException, NullArgumentException {

        if (x == null || y == null) {
            throw new NullArgumentException();
        }
        if (x.length == 0 || y.length == 0) {
            throw new MathIllegalArgumentException(LocalizedCoreFormats.NO_DATA);
        }
        MathArrays.checkEqualLength(y, x);
        int nTies = 0;
        for (int i = 0; i < x.length; i++) {
            if (x[i] == y[i]) {
                nTies++;
            }
        }
        if (x.length - nTies == 0) {
            throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_DATA);
        }
        return nTies;
    }

    /**
     * Calculates y[i] - x[i] for all i, discarding ties.
     *
     * @param x first sample
     * @param y second sample
     * @return z = y - x (minus tied values)
     */
    private double[] calculateDifferences(final double[] x, final double[] y) {
        final List differences = new ArrayList<>();
        for (int i = 0; i < x.length; ++i) {
            if (y[i] != x[i]) {
                differences.add(y[i] - x[i]);
            }
        }
        final int nDiff = differences.size();
        final double[] z = new double[nDiff];
        for (int i = 0; i < nDiff; i++) {
            z[i] = differences.get(i);
        }
        return z;
    }

    /**
     * Calculates |z[i]| for all i
     *
     * @param z sample
     * @return |z|
     * @throws NullArgumentException if {@code z} is {@code null}
     * @throws MathIllegalArgumentException if {@code z} is zero-length.
     */
    private double[] calculateAbsoluteDifferences(final double[] z)
        throws MathIllegalArgumentException, NullArgumentException {

        if (z == null) {
            throw new NullArgumentException();
        }

        if (z.length == 0) {
            throw new MathIllegalArgumentException(LocalizedCoreFormats.NO_DATA);
        }

        final double[] zAbs = new double[z.length];

        for (int i = 0; i < z.length; ++i) {
            zAbs[i] = FastMath.abs(z[i]);
        }

        return zAbs;
    }

    /**
     * Computes the
     * 
     * Wilcoxon signed ranked statistic comparing means for two related
     * samples or repeated measurements on a single sample.
     * 

* This statistic can be used to perform a Wilcoxon signed ranked test * evaluating the null hypothesis that the two related samples or repeated * measurements on a single sample have equal mean. *

*

* Let Xi denote the i'th individual of the first sample and * Yi the related i'th individual in the second sample. Let * Zi = Yi - Xi. *

*

* Preconditions: *

    *
  • The differences Zi must be independent.
  • *
  • Each Zi comes from a continuous population (they must be * identical) and is symmetric about a common median.
  • *
  • The values that Xi and Yi represent are * ordered, so the comparisons greater than, less than, and equal to are * meaningful.
  • *
*

* * @param x the first sample * @param y the second sample * @return wilcoxonSignedRank statistic (the larger of W+ and W-) * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. * @throws MathIllegalArgumentException if {@code x} or {@code y} are * zero-length. * @throws MathIllegalArgumentException if {@code x} and {@code y} do not * have the same length. */ public double wilcoxonSignedRank(final double[] x, final double[] y) throws MathIllegalArgumentException, NullArgumentException { ensureDataConformance(x, y); final double[] z = calculateDifferences(x, y); final double[] zAbs = calculateAbsoluteDifferences(z); final double[] ranks = naturalRanking.rank(zAbs); double Wplus = 0; for (int i = 0; i < z.length; ++i) { if (z[i] > 0) { Wplus += ranks[i]; } } final int n = z.length; final double Wminus = ((n * (n + 1)) / 2.0) - Wplus; return FastMath.max(Wplus, Wminus); } /** * Calculates the p-value associated with a Wilcoxon signed rank statistic * by enumerating all possible rank sums and counting the number that exceed * the given value. * * @param stat Wilcoxon signed rank statistic value * @param n number of subjects (corresponding to x.length) * @return two-sided exact p-value */ private double calculateExactPValue(final double stat, final int n) { final int m = 1 << n; int largerRankSums = 0; for (int i = 0; i < m; ++i) { int rankSum = 0; // Generate all possible rank sums for (int j = 0; j < n; ++j) { // (i >> j) & 1 extract i's j-th bit from the right if (((i >> j) & 1) == 1) { rankSum += j + 1; } } if (rankSum >= stat) { ++largerRankSums; } } /* * largerRankSums / m gives the one-sided p-value, so it's multiplied * with 2 to get the two-sided p-value */ return 2 * ((double) largerRankSums) / m; } /** * Computes an estimate of the (2-sided) p-value using the normal * approximation. Includes a continuity correction in computing the * correction factor. * * @param stat Wilcoxon rank sum statistic * @param n number of subjects (corresponding to x.length minus any tied ranks) * @return two-sided asymptotic p-value */ private double calculateAsymptoticPValue(final double stat, final int n) { final double ES = n * (n + 1) / 4.0; /* * Same as (but saves computations): final double VarW = ((double) (N * * (N + 1) * (2*N + 1))) / 24; */ final double VarS = ES * ((2 * n + 1) / 6.0); double z = stat - ES; final double t = FastMath.signum(z); z = (z - t * 0.5) / FastMath.sqrt(VarS); // want 2-sided tail probability, so make sure z < 0 if (z > 0) { z = -z; } final NormalDistribution standardNormal = new NormalDistribution(0, 1); return 2 * standardNormal.cumulativeProbability(z); } /** * Returns the observed significance level, or * * p-value, associated with a * * Wilcoxon signed ranked statistic comparing mean for two related * samples or repeated measurements on a single sample. *

* Let Xi denote the i'th individual of the first sample and * Yi the related i'th individual in the second sample. Let * Zi = Yi - Xi. *

*

* Preconditions: *

    *
  • The differences Zi must be independent.
  • *
  • Each Zi comes from a continuous population (they must be * identical) and is symmetric about a common median.
  • *
  • The values that Xi and Yi represent are * ordered, so the comparisons greater than, less than, and equal to are * meaningful.
  • *
* Implementation notes: *
    *
  • Tied pairs are discarded from the data.
  • *
  • When {@code exactPValue} is false, the normal approximation is used * to estimate the p-value including a continuity correction factor. * {@code wilcoxonSignedRankTest(x, y, true)} should give the same results * as {@code wilcox.test(x, y, alternative = "two.sided", mu = 0, * paired = TRUE, exact = FALSE, correct = TRUE)} in R (as long as * there are no tied pairs in the data).
  • *
*

* * @param x the first sample * @param y the second sample * @param exactPValue if the exact p-value is wanted (only works for * x.length <= 30, if true and x.length > 30, MathIllegalArgumentException is thrown) * @return p-value * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. * @throws MathIllegalArgumentException if {@code x} or {@code y} are * zero-length or for all i, x[i] == y[i] * @throws MathIllegalArgumentException if {@code x} and {@code y} do not * have the same length. * @throws MathIllegalArgumentException if {@code exactPValue} is * {@code true} and {@code x.length} > 30 * @throws MathIllegalStateException if the p-value can not be computed due * to a convergence error * @throws MathIllegalStateException if the maximum number of iterations is * exceeded */ public double wilcoxonSignedRankTest(final double[] x, final double[] y, final boolean exactPValue) throws MathIllegalArgumentException, NullArgumentException, MathIllegalStateException { final int nTies = ensureDataConformance(x, y); final int n = x.length - nTies; final double stat = wilcoxonSignedRank(x, y); if (exactPValue && n > 30) { throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE, n, 30); } if (exactPValue) { return calculateExactPValue(stat, n); } else { return calculateAsymptoticPValue(stat, n); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy