All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.hipparchus.stat.interval.BinomialProportion Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.stat.interval;

import org.hipparchus.distribution.continuous.FDistribution;
import org.hipparchus.distribution.continuous.NormalDistribution;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.stat.LocalizedStatFormats;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;

/**
 * Utility methods to generate confidence intervals for a binomial proportion.
 *
 * @see
 * 
 * Binomial proportion confidence interval (Wikipedia)
 */
public class BinomialProportion {

    /**
     * The standard normal distribution to calculate the inverse cumulative probability.
     * Accessed and used in a thread-safe way.
     */
    private static final NormalDistribution NORMAL_DISTRIBUTION = new NormalDistribution(0, 1);

    /** Utility class, prevent instantiation. */
    private BinomialProportion() {}

    /**
     * Create an Agresti-Coull binomial confidence interval for the true
     * probability of success of an unknown binomial distribution with
     * the given observed number of trials, probability of success and
     * confidence level.
     * 

* Preconditions: *

    *
  • {@code numberOfTrials} must be positive
  • *
  • {@code probabilityOfSuccess} must be between 0 and 1 (inclusive)
  • *
  • {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
  • *
* * @see * * Agresti-Coull interval (Wikipedia) * * @param numberOfTrials number of trials * @param probabilityOfSuccess observed probability of success * @param confidenceLevel desired probability that the true probability of * success falls within the returned interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} * @throws MathIllegalArgumentException if {@code numberOfTrials <= 0}. * @throws MathIllegalArgumentException if {@code probabilityOfSuccess} is not in the interval [0, 1]. * @throws MathIllegalArgumentException if {@code confidenceLevel} is not in the interval (0, 1). */ public static ConfidenceInterval getAgrestiCoullInterval(int numberOfTrials, double probabilityOfSuccess, double confidenceLevel) throws MathIllegalArgumentException { checkParameters(numberOfTrials, probabilityOfSuccess, confidenceLevel); final int numberOfSuccesses = (int) (numberOfTrials * probabilityOfSuccess); final double alpha = (1.0 - confidenceLevel) / 2; final double z = NORMAL_DISTRIBUTION.inverseCumulativeProbability(1 - alpha); final double zSquared = FastMath.pow(z, 2); final double modifiedNumberOfTrials = numberOfTrials + zSquared; final double modifiedSuccessesRatio = (1.0 / modifiedNumberOfTrials) * (numberOfSuccesses + 0.5 * zSquared); final double difference = z * FastMath.sqrt(1.0 / modifiedNumberOfTrials * modifiedSuccessesRatio * (1 - modifiedSuccessesRatio)); return new ConfidenceInterval(modifiedSuccessesRatio - difference, modifiedSuccessesRatio + difference, confidenceLevel); } /** * Create a Clopper-Pearson binomial confidence interval for the true * probability of success of an unknown binomial distribution with * the given observed number of trials, probability of success and * confidence level. *

* Preconditions: *

    *
  • {@code numberOfTrials} must be positive
  • *
  • {@code probabilityOfSuccess} must be between 0 and 1 (inclusive)
  • *
  • {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
  • *
* * @see * * Clopper-Pearson interval (Wikipedia) * * @param numberOfTrials number of trials * @param probabilityOfSuccess observed probability of success * @param confidenceLevel desired probability that the true probability of * success falls within the returned interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} * @throws MathIllegalArgumentException if {@code numberOfTrials <= 0}. * @throws MathIllegalArgumentException if {@code probabilityOfSuccess} is not in the interval [0, 1]. * @throws MathIllegalArgumentException if {@code confidenceLevel} is not in the interval (0, 1). */ public static ConfidenceInterval getClopperPearsonInterval(int numberOfTrials, double probabilityOfSuccess, double confidenceLevel) throws MathIllegalArgumentException { checkParameters(numberOfTrials, probabilityOfSuccess, confidenceLevel); double lowerBound = 0; double upperBound = 0; final int numberOfSuccesses = (int) (numberOfTrials * probabilityOfSuccess); if (numberOfSuccesses > 0) { final double alpha = (1.0 - confidenceLevel) / 2.0; final FDistribution distributionLowerBound = new FDistribution(2 * (numberOfTrials - numberOfSuccesses + 1), 2 * numberOfSuccesses); final double fValueLowerBound = distributionLowerBound.inverseCumulativeProbability(1 - alpha); lowerBound = numberOfSuccesses / (numberOfSuccesses + (numberOfTrials - numberOfSuccesses + 1) * fValueLowerBound); final FDistribution distributionUpperBound = new FDistribution(2 * (numberOfSuccesses + 1), 2 * (numberOfTrials - numberOfSuccesses)); final double fValueUpperBound = distributionUpperBound.inverseCumulativeProbability(1 - alpha); upperBound = (numberOfSuccesses + 1) * fValueUpperBound / (numberOfTrials - numberOfSuccesses + (numberOfSuccesses + 1) * fValueUpperBound); } return new ConfidenceInterval(lowerBound, upperBound, confidenceLevel); } /** * Create a binomial confidence interval using normal approximation * for the true probability of success of an unknown binomial distribution * with the given observed number of trials, probability of success and * confidence level. *

* Preconditions: *

    *
  • {@code numberOfTrials} must be positive
  • *
  • {@code probabilityOfSuccess} must be between 0 and 1 (inclusive)
  • *
  • {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
  • *
* * @see * * Normal approximation interval (Wikipedia) * * @param numberOfTrials number of trials * @param probabilityOfSuccess observed probability of success * @param confidenceLevel desired probability that the true probability of * success falls within the returned interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} * @throws MathIllegalArgumentException if {@code numberOfTrials <= 0}. * @throws MathIllegalArgumentException if {@code probabilityOfSuccess} is not in the interval [0, 1]. * @throws MathIllegalArgumentException if {@code confidenceLevel} is not in the interval (0, 1). */ public static ConfidenceInterval getNormalApproximationInterval(int numberOfTrials, double probabilityOfSuccess, double confidenceLevel) throws MathIllegalArgumentException { checkParameters(numberOfTrials, probabilityOfSuccess, confidenceLevel); final double mean = probabilityOfSuccess; final double alpha = (1.0 - confidenceLevel) / 2; final double difference = NORMAL_DISTRIBUTION.inverseCumulativeProbability(1 - alpha) * FastMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean)); return new ConfidenceInterval(mean - difference, mean + difference, confidenceLevel); } /** * Create an Wilson score binomial confidence interval for the true * probability of success of an unknown binomial distribution with * the given observed number of trials, probability of success and * confidence level. *

* Preconditions: *

    *
  • {@code numberOfTrials} must be positive
  • *
  • {@code probabilityOfSuccess} must be between 0 and 1 (inclusive)
  • *
  • {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
  • *
* * @see * * Wilson score interval (Wikipedia) * * @param numberOfTrials number of trials * @param probabilityOfSuccess observed probability of success * @param confidenceLevel desired probability that the true probability of * success falls within the returned interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} * @throws MathIllegalArgumentException if {@code numberOfTrials <= 0}. * @throws MathIllegalArgumentException if {@code probabilityOfSuccess} is not in the interval [0, 1]. * @throws MathIllegalArgumentException if {@code confidenceLevel} is not in the interval (0, 1). */ public static ConfidenceInterval getWilsonScoreInterval(int numberOfTrials, double probabilityOfSuccess, double confidenceLevel) throws MathIllegalArgumentException { checkParameters(numberOfTrials, probabilityOfSuccess, confidenceLevel); final double alpha = (1.0 - confidenceLevel) / 2; final double z = NORMAL_DISTRIBUTION.inverseCumulativeProbability(1 - alpha); final double zSquared = FastMath.pow(z, 2); final double mean = probabilityOfSuccess; final double factor = 1.0 / (1 + (1.0 / numberOfTrials) * zSquared); final double modifiedSuccessRatio = mean + (1.0 / (2 * numberOfTrials)) * zSquared; final double difference = z * FastMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean) + (1.0 / (4 * FastMath.pow(numberOfTrials, 2)) * zSquared)); final double lowerBound = factor * (modifiedSuccessRatio - difference); final double upperBound = factor * (modifiedSuccessRatio + difference); return new ConfidenceInterval(lowerBound, upperBound, confidenceLevel); } /** * Verifies that parameters satisfy preconditions. * * @param numberOfTrials number of trials (must be positive) * @param probabilityOfSuccess probability of successes (must be between 0 and 1) * @param confidenceLevel confidence level (must be strictly between 0 and 1) * @throws MathIllegalArgumentException if {@code numberOfTrials <= 0}. * @throws MathIllegalArgumentException if {@code probabilityOfSuccess is not in the interval [0, 1]}. * @throws MathIllegalArgumentException if {@code confidenceLevel} is not in the interval (0, 1)}. */ private static void checkParameters(int numberOfTrials, double probabilityOfSuccess, double confidenceLevel) { if (numberOfTrials <= 0) { throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_TRIALS, numberOfTrials); } MathUtils.checkRangeInclusive(probabilityOfSuccess, 0, 1); if (confidenceLevel <= 0 || confidenceLevel >= 1) { throw new MathIllegalArgumentException(LocalizedStatFormats.OUT_OF_BOUNDS_CONFIDENCE_LEVEL, confidenceLevel, 0, 1); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy