oms3.ngmf.util.cosu.Efficiencies Maven / Gradle / Ivy
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package oms3.ngmf.util.cosu;
import oms3.util.Stats;
/**
*
* @author od
*/
public class Efficiencies {
public static final int MAXIMIZATION = 1;
public static final int MINIMIZATION = 2;
public static final int ABSMAXIMIZATION = 3;
public static final int ABSMINIMIZATION = 4;
private Efficiencies() {
}
private static void sameArrayLen(double[]... arr) {
int len = arr[0].length;
for (double[] a : arr) {
if (a.length != len) {
throw new IllegalArgumentException("obs and sim data have not same size (" + a.length + "/" + len + ")");
}
}
}
/** Calculates the efficiency between a test data set and a verification data set
* after Nash & Sutcliffe (1970). The efficiency is described as the proportion of
* the cumulated cubic deviation between both data sets and the cumulated cubic
* deviation between the verification data set and its mean value.
* @param sim the simulation data set
* @param obs the validation (observed) data set
* @param pow the power for the deviation terms
* @return the calculated efficiency or -9999 if an error occurs
*/
public static double nashSutcliffe(double[] obs, double[] sim, double pow) {
sameArrayLen(obs, sim);
int pre_size = sim.length;
int steps = pre_size;
double sum_td = 0;
double sum_vd = 0;
/**summing up both data sets */
for (int i = 0; i < steps; i++) {
sum_td = sum_td + sim[i];
sum_vd = sum_vd + obs[i];
}
/** calculating mean values for both data sets */
double mean_vd = sum_vd / steps;
/** calculating mean pow deviations */
double td_vd = 0;
double vd_mean = 0;
for (int i = 0; i < steps; i++) {
td_vd = td_vd + (Math.pow((Math.abs(obs[i] - sim[i])), pow));
vd_mean = vd_mean + (Math.pow((Math.abs(obs[i] - mean_vd)), pow));
}
return 1 - (td_vd / vd_mean);
}
/** Calculates the efficiency between the log values of a test data set and a verification data set
* after Nash & Sutcliffe (1970). The efficiency is described as the proportion of
* the cumulated cubic deviation between both data sets and the cumulated cubic
* deviation between the verification data set and its mean value. If either prediction or validation has a
* value of <= 0 then the pair is ommited from the calculation and a message is put to system out.
* @param sim the simulation data set
* @param obs the validation (observed) data set
* @param pow the power for the deviation terms
* @return the calculated log_efficiency or -9999 if an error occurs
*/
public static double nashSutcliffeLog(double[] obs, double[] sim, double pow) {
sameArrayLen(obs, sim);
int size = sim.length;
double sum_log_pd = 0;
double sum_log_vd = 0;
/** calculating logarithmic values of both data sets. Sets 0 if data is 0 */
double[] log_preData = new double[size];
double[] log_valData = new double[size];
int validPairs = 0;
for (int i = 0; i < size; i++) {
//either prediction or validation shows a value of zero
//in this case the pair is excluded from the further calculation,
//simply by setting the values to -1 and not increasing valid pairs
if (sim[i] <= 0 || obs[i] <= 0) {
log_preData[i] = -1;
log_valData[i] = -1;
}
//both prediction and validation shows a value of exact zero
//in this case the pair is taken as a perfect fit and included
//into the further calculation
if (sim[i] == 0 && obs[i] == 0) {
log_preData[i] = 0;
log_valData[i] = 0;
validPairs++;
}
//both prediction and validation are greater than zero
//no problem for the calculation
if (sim[i] > 0 && obs[i] > 0) {
log_preData[i] = Math.log(sim[i]);
log_valData[i] = Math.log(obs[i]);
validPairs++;
}
}
/**summing up both data sets */
for (int i = 0; i < size; i++) {
if (log_preData[i] >= 0) {
sum_log_pd = sum_log_pd + log_preData[i];
sum_log_vd = sum_log_vd + log_valData[i];
}
}
/** calculating mean values for both data sets */
double mean_log_vd = sum_log_vd / validPairs;
/** calculating mean pow deviations */
double pd_log_vd = 0;
double vd_log_mean = 0;
for (int i = 0; i < size; i++) {
if (log_preData[i] >= 0) {
pd_log_vd = pd_log_vd + (Math.pow(Math.abs(log_valData[i] - log_preData[i]), pow));
vd_log_mean = vd_log_mean + (Math.pow(Math.abs(log_valData[i] - mean_log_vd), pow));
}
}
return 1 - (pd_log_vd / vd_log_mean);
}
/** Calculates the index of agreement (ioa) between a test data set and a verification data set
* after Willmot & Wicks (1980). The ioa is described as the proportion of
* the cumulated cubic deviation between both data sets and the squared sum of the absolute
* deviations between the verification data set and the test mean value and the test data set and
* its mean value.
* @param sim the test Data set
* @param obs the verification data set
* @param pow the power
* @return the calculated ioa or -9999 if an error occurs
*/
public static double ioa(double[] obs, double[] sim, double pow) {
sameArrayLen(obs, sim);
int steps = sim.length;
double sum_obs = 0;
/**summing up both data sets */
for (int i = 0; i < steps; i++) {
sum_obs += obs[i];
}
/** calculating mean values for both data sets */
double mean_obs = sum_obs / steps;
/** calculating mean cubic deviations */
/** calculating absolute squared sum of deviations from verification mean */
double td_vd = 0;
double abs_sqDevi = 0;
for (int i = 0; i < steps; i++) {
td_vd += (Math.pow((Math.abs(obs[i] - sim[i])), pow));
abs_sqDevi += Math.pow(Math.abs(sim[i] - mean_obs) + Math.abs(obs[i] - mean_obs), pow);
}
return 1.0 - (td_vd / abs_sqDevi);
}
/**
* Calcs coefficients of linear regression between x, y data
* @param xData the independent data array (x)
* @param yData the dependent data array (y)
* @return (intercept, gradient, r?)
*/
public static double[] linearReg(double[] xData, double[] yData) {
sameArrayLen(xData, yData);
double sumYValue = 0;
double meanYValue = 0;
double sumXValue = 0;
double meanXValue = 0;
double sumX = 0;
double sumY = 0;
double prod = 0;
double NODATA = -9999;
int nstat = xData.length;
double[] regCoef = new double[3]; //(intercept, gradient, r?)
int counter = 0;
//calculating sums
for (int i = 0; i < nstat; i++) {
if ((yData[i] != NODATA) && (xData[i] != NODATA)) {
sumYValue += yData[i];
sumXValue += xData[i];
counter++;
}
}
//calculating means
meanYValue = sumYValue / counter;
meanXValue = sumXValue / counter;
//calculating regression coefficients
for (int i = 0; i < nstat; i++) {
if ((yData[i] != NODATA) && (xData[i] != NODATA)) {
sumX += Math.pow((xData[i] - meanXValue), 2);
sumY += Math.pow((yData[i] - meanYValue), 2);
prod += ((xData[i] - meanXValue) * (yData[i] - meanYValue));
}
}
if (sumX > 0 && sumY > 0) {
regCoef[1] = prod / sumX; //gradient
regCoef[0] = meanYValue - regCoef[1] * meanXValue; //intercept
regCoef[2] = Math.pow((prod / Math.sqrt(sumX * sumY)), 2); //r?
} else {
regCoef[1] = 0;
regCoef[0] = 0;
regCoef[2] = 0;
}
return regCoef;
}
/**
*
* @param prediction
* @param validation
* @return
*/
public static double dsGrad(double[] obs, double[] sim) {
sameArrayLen(obs, sim);
int dsLength = sim.length;
double[] cumPred = new double[dsLength];
double[] cumVali = new double[dsLength];
double cp = 0;
double cv = 0;
for (int i = 0; i < dsLength; i++) {
cp += sim[i];
cv += obs[i];
cumPred[i] = cp;
cumVali[i] = cv;
}
//interc., grad., r?
double[] regCoef = linearReg(cumVali, cumPred);
return regCoef[1];
}
/**
*
* @param prediction
* @param validation
* @return
*/
public static double absVolumeError(double[] obs, double[] sim) {
sameArrayLen(obs, sim);
double volError = 0;
for (int i = 0; i < sim.length; i++) {
volError += (sim[i] - obs[i]);
}
return Math.abs(volError);
}
/**
*
* @param prediction
* @param validation
* @return
*/
public static double pbias(double[] obs, double[] sim) {
sameArrayLen(obs, sim);
double sumObs = 0;
double sumDif = 0;
for (int i = 0; i < sim.length; i++) {
sumDif += (sim[i] - obs[i]);
sumObs += obs[i];
}
return (sumDif / sumObs) * 100;
}
/**
*
* @param prediction
* @param validation
* @return
*/
public static double rmse(double[] obs, double[] sim) {
sameArrayLen(obs, sim);
double error = 0;
for (int i = 0; i < sim.length; i++) {
error += Math.pow((sim[i] - obs[i]), 2);
}
return Math.sqrt(error / sim.length);
}
/**
*
* @param validation
* @param prediction
* @param missVal
* @return
*/
public static double absDiffLog(double[] obs, double[] sim) {
sameArrayLen(obs, sim);
int N = obs.length;
double abs = 0;
for (int i = 0; i < N; i++) {
double measured = obs[i];
double simulated = sim[i];
if (measured == 0) {
measured = 0.0000001;
} else if (measured < 0) {
throw new RuntimeException("Error on Absolute Difference (log): Observed value is negative.");
}
if (simulated == 0) {
simulated = 0.0000001;
} else if (simulated < 0) {
throw new RuntimeException("Error on Absolute Difference (log): Simulated value is negative.");
}
abs += Math.abs(Math.log(measured) - Math.log(simulated));
}
return abs;
}
/**
*
* @param validation
* @param prediction
* @param missVal
* @return
*/
public static double absDiff(double[] obs, double[] sim) {
sameArrayLen(obs, sim);
int N = obs.length;
double abs = 0;
for (int i = 0; i < N; i++) {
double measured = obs[i];
if (measured == 0) {
measured = 0.0000001;
}
abs += Math.abs((measured - sim[i]) / measured);
}
return abs;
}
/**
*
* @param validation
* @param prediction
* @param missVal
* @return
*/
public static double pearsonsCorrelatrion(double[] obs, double[] sim) {
sameArrayLen(obs, sim);
double syy = 0.0, sxy = 0.0, sxx = 0.0, ay = 0.0, ax = 0.0;
int n = 0;
for (int j = 0; j < obs.length; j++) {
ax += obs[j];
ay += sim[j];
n++;
}
if (n == 0) {
throw new RuntimeException("Pearson's Correlation cannot be calculated due to no observed values");
}
ax = ax / ((double) n);
ay = ay / ((double) n);
for (int j = 0; j < obs.length; j++) {
double xt = obs[j] - ax;
double yt = sim[j] - ay;
sxx += xt * xt;
syy += yt * yt;
sxy += xt * yt;
}
return sxy / Math.sqrt(sxx * syy);
}
/**
* transformedRootMeanSquareError TRMSE
*
* @param obs
* @param sim
* @return
*/
public static double transformedRmse(double[] obs, double[] sim) {
sameArrayLen(sim, obs);
double error = 0;
double z_pred = 0.;
double z_val = 0.;
for (int i = 0; i < sim.length; i++) {
z_pred = (Math.pow((1.0 + sim[i]), 0.3) - 1.0) / 0.3;
z_val = (Math.pow((1.0 + obs[i]), 0.3) - 1.0) / 0.3;
error += (z_pred - z_val) * (z_pred - z_val);
}
return Math.sqrt(error / sim.length);
}
/** Runoff coefficient error ROCE
*
* @param obs
* @param sim
* @param precip
* @return
*/
public static double runoffCoefficientError(double[] obs, double[] sim, double[] precip) {
sameArrayLen(sim, obs, precip);
double mean_pred = Stats.mean(sim);
double mean_val = Stats.mean(obs);
double mean_ppt = Stats.mean(precip);
double error = Math.abs((mean_pred / mean_ppt) - (mean_val / mean_ppt));
return Math.sqrt(error);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy