org.htmlunit.cyberneko.xerces.dom.ParentNode Maven / Gradle / Ivy
/*
* Copyright (c) 2017-2024 Ronald Brill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.htmlunit.cyberneko.xerces.dom;
import org.w3c.dom.DOMException;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
/**
* ParentNode inherits from ChildNode and adds the capability of having child
* nodes. Not every node in the DOM can have children, so only nodes that can
* should inherit from this class and pay the price for it.
*
* ParentNode, just like NodeImpl, also implements NodeList, so it can return
* itself in response to the getChildNodes() query. This eliminiates the need
* for a separate ChildNodeList object. Note that this is an IMPLEMENTATION
* DETAIL; applications should _never_ assume that this identity exists. On the
* other hand, subclasses may need to override this, in case of conflicting
* names. This is the case for the classes HTMLSelectElementImpl and
* HTMLFormElementImpl of the HTML DOM.
*
* While we have a direct reference to the first child, the last child is stored
* as the previous sibling of the first child. First child nodes are marked as
* being so, and getNextSibling hides this fact.
*
* Note: Not all parent nodes actually need to also be a child. At some point we
* used to have ParentNode inheriting from NodeImpl and another class called
* ChildAndParentNode that inherited from ChildNode. But due to the lack of
* multiple inheritance a lot of code had to be duplicated which led to a
* maintenance nightmare. At the same time only a few nodes (Document,
* DocumentFragment, Entity, and Attribute) cannot be a child so the gain in
* memory wasn't really worth it. The only type for which this would be the case
* is Attribute, but we deal with there in another special way, so this is not
* applicable.
*
* This class doesn't directly support mutation events, however, it notifies the
* document when mutations are performed so that the document class do so.
*
*
* WARNING: Some of the code here is partially duplicated in AttrImpl, be
* careful to keep these two classes in sync!
*
*
* @author Arnaud Le Hors, IBM
* @author Joe Kesselman, IBM
* @author Andy Clark, IBM
*/
public abstract class ParentNode extends ChildNode {
/** Owner document. */
protected CoreDocumentImpl ownerDocument;
/** First child. */
protected ChildNode firstChild = null;
/** NodeList cache */
protected NodeListCache fNodeListCache = null;
/**
* No public constructor; only subclasses of ParentNode should be instantiated,
* and those normally via a Document's factory methods
*
* @param ownerDocument the owner document
*/
protected ParentNode(final CoreDocumentImpl ownerDocument) {
super(ownerDocument);
this.ownerDocument = ownerDocument;
}
/**
* {@inheritDoc}
*
* Returns a duplicate of a given node. You can consider this a generic "copy
* constructor" for nodes. The newly returned object should be completely
* independent of the source object's subtree, so changes in one after the clone
* has been made will not affect the other.
*
* Example: Cloning a Text node will copy both the node and the text it
* contains.
*
* Example: Cloning something that has children -- Element or Attr, for example
* -- will _not_ clone those children unless a "deep clone" has been requested.
* A shallow clone of an Attr node will yield an empty Attr of the same name.
*
* NOTE: Clones will always be read/write, even if the node being cloned is
* read-only, to permit applications using only the DOM API to obtain editable
* copies of locked portions of the tree.
*/
@Override
public Node cloneNode(final boolean deep) {
if (needsSyncChildren()) {
synchronizeChildren();
}
final ParentNode newnode = (ParentNode) super.cloneNode(deep);
// set owner document
newnode.ownerDocument = ownerDocument;
// Need to break the association w/ original kids
newnode.firstChild = null;
// invalidate cache for children NodeList
newnode.fNodeListCache = null;
// Then, if deep, clone the kids too.
if (deep) {
for (ChildNode child = firstChild; child != null; child = child.nextSibling) {
newnode.appendChild(child.cloneNode(true));
}
}
return newnode;
}
/**
* {@inheritDoc}
*
* Find the Document that this Node belongs to (the document in whose context
* the Node was created). The Node may or may not currently be part of that
* Document's actual contents.
*/
@Override
public Document getOwnerDocument() {
return ownerDocument;
}
/**
* {@inheritDoc}
*
* Same as above but returns internal type and this one is not overridden by
* CoreDocumentImpl to return null
*/
@Override
CoreDocumentImpl ownerDocument() {
return ownerDocument;
}
/**
* {@inheritDoc}
*
* NON-DOM set the ownerDocument of this node and its children
*/
@Override
protected void setOwnerDocument(final CoreDocumentImpl doc) {
if (needsSyncChildren()) {
synchronizeChildren();
}
super.setOwnerDocument(doc);
ownerDocument = doc;
for (ChildNode child = firstChild; child != null; child = child.nextSibling) {
child.setOwnerDocument(doc);
}
}
/**
* {@inheritDoc}
*
* Test whether this node has any children. Convenience shorthand for
* (Node.getFirstChild()!=null)
*/
@Override
public boolean hasChildNodes() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return firstChild != null;
}
/**
* {@inheritDoc}
*
* Obtain a NodeList enumerating all children of this node. If there are none,
* an (initially) empty NodeList is returned.
*
* NodeLists are "live"; as children are added/removed the NodeList will
* immediately reflect those changes. Also, the NodeList refers to the actual
* nodes, so changes to those nodes made via the DOM tree will be reflected in
* the NodeList and vice versa.
*
* In this implementation, Nodes implement the NodeList interface and provide
* their own getChildNodes() support. Other DOMs may solve this differently.
*/
@Override
public NodeList getChildNodes() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return this;
}
/**
* {@inheritDoc}
*/
@Override
public Node getFirstChild() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return firstChild;
}
/**
* {@inheritDoc}
*/
@Override
public Node getLastChild() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return lastChild();
}
final ChildNode lastChild() {
// last child is stored as the previous sibling of first child
return firstChild != null ? firstChild.previousSibling : null;
}
/**
* {@inheritDoc}
*
* Move one or more node(s) to our list of children. Note that this implicitly
* removes them from their previous parent.
*
* @param newChild The Node to be moved to our subtree. As a convenience
* feature, inserting a DocumentNode will instead insert all its
* children.
*
* @param refChild Current child which newChild should be placed immediately
* before. If refChild is null, the insertion occurs after all
* existing Nodes, like appendChild().
*
* @return newChild, in its new state (relocated, or emptied in the case of
* DocumentNode.)
*
* @throws DOMException HIERARCHY_REQUEST_ERR if newChild is of a type that
* shouldn't be a child of this node, or if newChild is an
* ancestor of this node.
*
* @throws DOMException WRONG_DOCUMENT_ERR if newChild has a different owner
* document than we do.
*
* @throws DOMException NOT_FOUND_ERR if refChild is not a child of this node.
*
* @throws DOMException NO_MODIFICATION_ALLOWED_ERR if this node is read-only.
*/
@Override
public Node insertBefore(final Node newChild, final Node refChild) throws DOMException {
// Tail-call; optimizer should be able to do good things with.
return internalInsertBefore(newChild, refChild, false);
}
// NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
// to control which mutation events are spawned. This version of the
// insertBefore operation allows us to do so. It is not intended
// for use by application programs.
Node internalInsertBefore(final Node newChild, Node refChild, final boolean replace) throws DOMException {
final boolean errorChecking = ownerDocument.errorChecking;
if (newChild.getNodeType() == Node.DOCUMENT_FRAGMENT_NODE) {
// SLOW BUT SAFE: We could insert the whole subtree without
// juggling so many next/previous pointers. (Wipe out the
// parent's child-list, patch the parent pointers, set the
// ends of the list.) But we know some subclasses have special-
// case behavior they add to insertBefore(), so we don't risk it.
// This approch also takes fewer bytecodes.
// NOTE: If one of the children is not a legal child of this
// node, throw HIERARCHY_REQUEST_ERR before _any_ of the children
// have been transferred. (Alternative behaviors would be to
// reparent up to the first failure point or reparent all those
// which are acceptable to the target node, neither of which is
// as robust. PR-DOM-0818 isn't entirely clear on which it
// recommends?????
// No need to check kids for right-document; if they weren't,
// they wouldn't be kids of that DocFrag.
if (errorChecking) {
for (Node kid = newChild.getFirstChild(); // Prescan
kid != null; kid = kid.getNextSibling()) {
if (!ownerDocument.isKidOK(this, kid)) {
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR, DOMMessageFormatter
.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
}
}
while (newChild.hasChildNodes()) {
insertBefore(newChild.getFirstChild(), refChild);
}
return newChild;
}
if (newChild == refChild) {
// stupid case that must be handled as a no-op triggering events...
refChild = refChild.getNextSibling();
removeChild(newChild);
insertBefore(newChild, refChild);
return newChild;
}
if (needsSyncChildren()) {
synchronizeChildren();
}
if (errorChecking) {
if (newChild.getOwnerDocument() != ownerDocument && newChild != ownerDocument) {
throw new DOMException(DOMException.WRONG_DOCUMENT_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "WRONG_DOCUMENT_ERR", null));
}
if (!ownerDocument.isKidOK(this, newChild)) {
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR, DOMMessageFormatter
.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
// refChild must be a child of this node (or null)
if (refChild != null && refChild.getParentNode() != this) {
throw new DOMException(DOMException.NOT_FOUND_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
}
// Prevent cycles in the tree
// newChild cannot be ancestor of this Node,
// and actually cannot be this
boolean treeSafe = true;
for (NodeImpl a = this; treeSafe && a != null; a = a.parentNode()) {
treeSafe = newChild != a;
}
if (!treeSafe) {
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR, DOMMessageFormatter
.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
}
// notify document
ownerDocument.insertingNode(this, replace);
// Convert to internal type, to avoid repeated casting
final ChildNode newInternal = (ChildNode) newChild;
final Node oldparent = newInternal.parentNode();
if (oldparent != null) {
oldparent.removeChild(newInternal);
}
// Convert to internal type, to avoid repeated casting
final ChildNode refInternal = (ChildNode) refChild;
// Attach up
newInternal.ownerNode = this;
newInternal.isOwned(true);
// Attach before and after
// Note: firstChild.previousSibling == lastChild!!
if (firstChild == null) {
// this our first and only child
firstChild = newInternal;
newInternal.isFirstChild(true);
newInternal.previousSibling = newInternal;
}
else {
if (refInternal == null) {
// this is an append
final ChildNode lastChild = firstChild.previousSibling;
lastChild.nextSibling = newInternal;
newInternal.previousSibling = lastChild;
firstChild.previousSibling = newInternal;
}
else {
// this is an insert
if (refChild == firstChild) {
// at the head of the list
firstChild.isFirstChild(false);
newInternal.nextSibling = firstChild;
newInternal.previousSibling = firstChild.previousSibling;
firstChild.previousSibling = newInternal;
firstChild = newInternal;
newInternal.isFirstChild(true);
}
else {
// somewhere in the middle
final ChildNode prev = refInternal.previousSibling;
newInternal.nextSibling = refInternal;
prev.nextSibling = newInternal;
refInternal.previousSibling = newInternal;
newInternal.previousSibling = prev;
}
}
}
changed();
// update cached length if we have any
if (fNodeListCache != null) {
if (fNodeListCache.fLength != -1) {
fNodeListCache.fLength++;
}
if (fNodeListCache.fChildIndex != -1) {
// if we happen to insert just before the cached node, update
// the cache to the new node to match the cached index
if (fNodeListCache.fChild == refInternal) {
fNodeListCache.fChild = newInternal;
}
else {
// otherwise just invalidate the cache
fNodeListCache.fChildIndex = -1;
}
}
}
// notify document
ownerDocument.insertedNode(this, newInternal, replace);
checkNormalizationAfterInsert(newInternal);
return newChild;
}
/**
* {@inheritDoc}
*
* Remove a child from this Node. The removed child's subtree remains intact so
* it may be re-inserted elsewhere.
*
* @return oldChild, in its new state (removed).
*
* @throws DOMException NOT_FOUND_ERR if oldChild is not a child of this node.
*
* @throws DOMException NO_MODIFICATION_ALLOWED_ERR if this node is read-only.
*/
@Override
public Node removeChild(final Node oldChild) throws DOMException {
// Tail-call, should be optimizable
return internalRemoveChild(oldChild, false);
}
// NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
// to control which mutation events are spawned. This version of the
// removeChild operation allows us to do so. It is not intended
// for use by application programs.
Node internalRemoveChild(final Node oldChild, final boolean replace) throws DOMException {
final CoreDocumentImpl ownerDoc = ownerDocument();
if (ownerDoc.errorChecking) {
if (oldChild != null && oldChild.getParentNode() != this) {
throw new DOMException(DOMException.NOT_FOUND_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
}
}
final ChildNode oldInternal = (ChildNode) oldChild;
// notify document
ownerDoc.removingNode(this, oldInternal, replace);
// Save previous sibling for normalization checking.
final ChildNode oldPreviousSibling = oldInternal.previousSibling();
// update cached length if we have any
if (fNodeListCache != null) {
if (fNodeListCache.fLength != -1) {
fNodeListCache.fLength--;
}
if (fNodeListCache.fChildIndex != -1) {
// if the removed node is the cached node
// move the cache to its (soon former) previous sibling
if (fNodeListCache.fChild == oldInternal) {
fNodeListCache.fChildIndex--;
fNodeListCache.fChild = oldPreviousSibling;
}
else {
// otherwise just invalidate the cache
fNodeListCache.fChildIndex = -1;
}
}
}
// Patch linked list around oldChild
// Note: lastChild == firstChild.previousSibling
if (oldInternal == firstChild) {
// removing first child
oldInternal.isFirstChild(false);
firstChild = oldInternal.nextSibling;
if (firstChild != null) {
firstChild.isFirstChild(true);
firstChild.previousSibling = oldInternal.previousSibling;
}
}
else {
final ChildNode prev = oldInternal.previousSibling;
final ChildNode next = oldInternal.nextSibling;
prev.nextSibling = next;
if (next == null) {
// removing last child
firstChild.previousSibling = prev;
}
else {
// removing some other child in the middle
next.previousSibling = prev;
}
}
// Remove oldInternal's references to tree
oldInternal.ownerNode = ownerDoc;
oldInternal.isOwned(false);
oldInternal.nextSibling = null;
oldInternal.previousSibling = null;
changed();
// notify document
ownerDoc.removedNode(this, replace);
checkNormalizationAfterRemove(oldPreviousSibling);
return oldInternal;
}
/**
* {@inheritDoc}
*
* Make newChild occupy the location that oldChild used to have. Note that
* newChild will first be removed from its previous parent, if any. Equivalent
* to inserting newChild before oldChild, then removing oldChild.
*
* @return oldChild, in its new state (removed).
*
* @throws DOMException HIERARCHY_REQUEST_ERR if newChild is of a type that
* shouldn't be a child of this node, or if newChild is one
* of our ancestors.
*
* @throws DOMException WRONG_DOCUMENT_ERR if newChild has a different owner
* document than we do.
*
* @throws DOMException NOT_FOUND_ERR if oldChild is not a child of this node.
*
* @throws DOMException NO_MODIFICATION_ALLOWED_ERR if this node is read-only.
*/
@Override
public Node replaceChild(final Node newChild, final Node oldChild) throws DOMException {
// If Mutation Events are being generated, this operation might
// throw aggregate events twice when modifying an Attr -- once
// on insertion and once on removal. DOM Level 2 does not specify
// this as either desirable or undesirable, but hints that
// aggregations should be issued only once per user request.
// notify document
ownerDocument.replacingNode(this);
internalInsertBefore(newChild, oldChild, true);
if (newChild != oldChild) {
internalRemoveChild(oldChild, true);
}
// notify document
ownerDocument.replacedNode(this);
return oldChild;
}
/*
* {@inheritDoc}
*
* Get Node text content
*/
@Override
public String getTextContent() throws DOMException {
final Node child = getFirstChild();
if (child != null) {
final Node next = child.getNextSibling();
if (next == null) {
return hasTextContent(child) ? child.getTextContent() : "";
}
final StringBuilder builder = new StringBuilder();
getTextContent(builder);
return builder.toString();
}
return "";
}
/**
* {@inheritDoc}
*/
@Override
void getTextContent(final StringBuilder builder) throws DOMException {
Node child = getFirstChild();
while (child != null) {
if (hasTextContent(child)) {
((NodeImpl) child).getTextContent(builder);
}
child = child.getNextSibling();
}
}
// internal method returning whether to take the given node's text content
final static boolean hasTextContent(final Node child) {
return child.getNodeType() != Node.COMMENT_NODE && child.getNodeType() != Node.PROCESSING_INSTRUCTION_NODE
&& (child.getNodeType() != Node.TEXT_NODE || !((TextImpl) child).isIgnorableWhitespace());
}
/*
* {@inheritDoc}
*/
@Override
public void setTextContent(final String textContent) throws DOMException {
// get rid of any existing children
Node child;
while ((child = getFirstChild()) != null) {
removeChild(child);
}
// create a Text node to hold the given content
if (textContent != null && textContent.length() != 0) {
appendChild(ownerDocument().createTextNode(textContent));
}
}
/**
* Count the immediate children of this node. Use to implement
* NodeList.getLength().
*
* @return the length
*/
int nodeListGetLength() {
if (fNodeListCache == null) {
if (needsSyncChildren()) {
synchronizeChildren();
}
// get rid of trivial cases
if (firstChild == null) {
return 0;
}
if (firstChild == lastChild()) {
return 1;
}
// otherwise request a cache object
fNodeListCache = ownerDocument.getNodeListCache(this);
}
if (fNodeListCache.fLength == -1) { // is the cached length invalid ?
int l;
ChildNode n;
// start from the cached node if we have one
if (fNodeListCache.fChildIndex != -1 && fNodeListCache.fChild != null) {
l = fNodeListCache.fChildIndex;
n = fNodeListCache.fChild;
}
else {
n = firstChild;
l = 0;
}
while (n != null) {
l++;
n = n.nextSibling;
}
fNodeListCache.fLength = l;
}
return fNodeListCache.fLength;
}
/**
* {@inheritDoc}
*
* NodeList method: Count the immediate children of this node
*
* @return int
*/
@Override
public int getLength() {
return nodeListGetLength();
}
/**
* @return the Nth immediate child of this node, or null if the index is out of
* bounds. Use to implement NodeList.item().
* @param index the index
*/
Node nodeListItem(final int index) {
if (fNodeListCache == null) {
if (needsSyncChildren()) {
synchronizeChildren();
}
// get rid of trivial case
if (firstChild == lastChild()) {
return index == 0 ? firstChild : null;
}
// otherwise request a cache object
fNodeListCache = ownerDocument.getNodeListCache(this);
}
int i = fNodeListCache.fChildIndex;
ChildNode n = fNodeListCache.fChild;
boolean firstAccess = true;
// short way
if (i != -1 && n != null) {
firstAccess = false;
if (i < index) {
while (i < index && n != null) {
i++;
n = n.nextSibling;
}
}
else if (i > index) {
while (i > index && n != null) {
i--;
n = n.previousSibling();
}
}
}
else {
// long way
if (index < 0) {
return null;
}
n = firstChild;
for (i = 0; i < index && n != null; i++) {
n = n.nextSibling;
}
}
// release cache if reaching last child or first child
if (!firstAccess && (n == firstChild || n == lastChild())) {
fNodeListCache.fChildIndex = -1;
fNodeListCache.fChild = null;
ownerDocument.freeNodeListCache(fNodeListCache);
}
else {
// otherwise update it
fNodeListCache.fChildIndex = i;
fNodeListCache.fChild = n;
}
return n;
}
/**
* {@inheritDoc}
*
* NodeList method: Return the Nth immediate child of this node, or null if the
* index is out of bounds.
*
* @return org.w3c.dom.Node
* @param index int
*/
@Override
public Node item(final int index) {
return nodeListItem(index);
}
/**
* Create a NodeList to access children that is use by subclass elements that
* have methods named getLength() or item(int). ChildAndParentNode optimizes
* getChildNodes() by implementing NodeList itself. However if a subclass
* Element implements methods with the same name as the NodeList methods, they
* will override the actually methods in this class.
*
* @return a node list
*/
protected final NodeList getChildNodesUnoptimized() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return new NodeList() {
@Override
public int getLength() {
return nodeListGetLength();
}
@Override
public Node item(final int index) {
return nodeListItem(index);
}
};
}
/**
* {@inheritDoc}
*
* DOM Level 3 WD- Experimental. Override inherited behavior from NodeImpl to
* support deep equal.
*/
@Override
public boolean isEqualNode(final Node arg) {
if (!super.isEqualNode(arg)) {
return false;
}
// there are many ways to do this test, and there isn't any way
// better than another. Performance may vary greatly depending on
// the implementations involved. This one should work fine for us.
Node child1 = getFirstChild();
Node child2 = arg.getFirstChild();
while (child1 != null && child2 != null) {
if (!child1.isEqualNode(child2)) {
return false;
}
child1 = child1.getNextSibling();
child2 = child2.getNextSibling();
}
return child1 == child2;
}
/**
* Override this method in subclass to hook in efficient internal data
* structure.
*/
protected void synchronizeChildren() {
// By default just change the flag to avoid calling this method again
needsSyncChildren(false);
}
/**
* Checks the normalized state of this node after inserting a child. If the
* inserted child causes this node to be unnormalized, then this node is flagged
* accordingly. The conditions for changing the normalized state are:
*
* - The inserted child is a text node and one of its adjacent siblings is
* also a text node.
*
- The inserted child is is itself unnormalized.
*
*
* @param insertedChild the child node that was inserted into this node
*
* @throws NullPointerException if the inserted child is null
*/
void checkNormalizationAfterInsert(final ChildNode insertedChild) {
// See if insertion caused this node to be unnormalized.
if (insertedChild.getNodeType() == Node.TEXT_NODE) {
final ChildNode prev = insertedChild.previousSibling();
final ChildNode next = insertedChild.nextSibling;
// If an adjacent sibling of the new child is a text node,
// flag this node as unnormalized.
if ((prev != null && prev.getNodeType() == Node.TEXT_NODE)
|| (next != null && next.getNodeType() == Node.TEXT_NODE)) {
isNormalized(false);
}
}
else {
// If the new child is not normalized,
// then this node is inherently not normalized.
if (!insertedChild.isNormalized()) {
isNormalized(false);
}
}
}
/**
* Checks the normalized of this node after removing a child. If the removed
* child causes this node to be unnormalized, then this node is flagged
* accordingly. The conditions for changing the normalized state are:
*
* - The removed child had two adjacent siblings that were text nodes.
*
*
* @param previousSibling the previous sibling of the removed child, or
* null
*/
void checkNormalizationAfterRemove(final ChildNode previousSibling) {
// See if removal caused this node to be unnormalized.
// If the adjacent siblings of the removed child were both text nodes,
// flag this node as unnormalized.
if (previousSibling != null && previousSibling.getNodeType() == Node.TEXT_NODE) {
final ChildNode next = previousSibling.nextSibling;
if (next != null && next.getNodeType() == Node.TEXT_NODE) {
isNormalized(false);
}
}
}
}