All Downloads are FREE. Search and download functionalities are using the official Maven repository.

echopointng.image.PngEncoder Maven / Gradle / Ivy

Go to download

Echo2 bundled with Echo2_Extras, Echo2_FileTransfer and echopointing and various improvements/bugfixes

There is a newer version: 2.0.4
Show newest version
package echopointng.image;

/* 
 * This file is part of the Echo Point Project.  This project is a collection
 * of Components that have extended the Echo Web Application Framework.
 *
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 */

/*
 * This LGPL code was written by J. David Eisenberg and can be found at :
 * 
 * 	http://www.catcode.com/pngencoder/index.html
 * 
 * v1.4 was incorporated as part of the EchoPoint library on 12/04/2003.
 * v1.5 was incorporated as part of the EchoPoint library on 29/10/2003.
 * 
 * Below is the original copyright notices as per the LGPL.
 *   
 */

/*
 * 
 * Thanks to Jay Denny at KeyPoint Software
 *    http://www.keypoint.com/
 * who let me develop this code on company time.
 *
 * You may contact me with (probably very-much-needed) improvements,
 * comments, and bug fixes at:
 *
 *   [email protected]
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 * A copy of the GNU LGPL may be found at
 * http://www.gnu.org/copyleft/lesser.html,
 *
 * @author J. David Eisenberg
 * @version 1.5, 19 Oct 2003
 *
 * CHANGES:
 * --------
 * com.keypoint.PngEncoder :
 * 
 * 19-Nov-2002 : CODING STYLE CHANGES ONLY (by David Gilbert for Object Refinery Limited);
 * 19-Sep-2003 : Fix for platforms using EBCDIC (contributed by Paulo Soares);
 * 19-Oct-2003 : Change private fields to protected fields so that
 *               PngEncoderB can inherit them (JDE)
 *				 Fixed bug with calculation of nRows
 *
 * com.keypoint.PngEncoderB :
 * 
 * 19-Sep-2003 : Fix for platforms using EBCDIC (contributed by Paulo Soares);
 * 19-Oct-2003 : Change private fields to protected fields so that
 *               PngEncoderB can inherit them (JDE)
 *				 Fixed bug with calculation of nRows
 *				 Added modifications for unsigned short images
 *					(contributed by Christian at xpogen.com) 
 */

import java.awt.Image;
import java.awt.image.BufferedImage;
import java.awt.image.DataBuffer;
import java.awt.image.ImageObserver;
import java.awt.image.IndexColorModel;
import java.awt.image.PixelGrabber;
import java.awt.image.WritableRaster;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.Serializable;
import java.util.zip.CRC32;
import java.util.zip.Deflater;
import java.util.zip.DeflaterOutputStream;

/**
 * PngEncoder implements the ImageEncoder interface
 * and hence can take a java.awt.Image object and encode it as a PNG
 * output stream.
 * 

* The Image can have a DirectColorModel or an IndexColorModel. *

* NOTE : While the Echo framework has a PNG encoder built in to it, it currently * does not handle transparency correctly. Therefore this encoder has been * provided. */ public class PngEncoder implements ImageEncoder, Serializable { private transient InternalPngEncoderA encoder=null; private boolean encodeAlpha = true; /** * Constructs a PngEncoder ready to start encoding, with the Alpha channel * being encoded. */ public PngEncoder() { encodeAlpha = true; } /** * @see echopointng.image.ImageEncoder#encode(java.awt.Image, java.io.OutputStream) */ public void encode(Image image, OutputStream out) throws IOException { if (encoder == null) { // // The newer B encoder will only take BufferedImage objects // whereas the older A encoder takes Image objects. // if (image instanceof BufferedImage) { encoder = new InternalPngEncoderB((BufferedImage) image); } else { encoder = new InternalPngEncoderA(image); } encoder.setEncodeAlpha(isEncodeAlpha()); } else { encoder.setImage(image); } encoder.encode(out,true); } /** * @see echopointng.image.ImageEncoder#getContentType() */ public String getContentType() { return "image/png"; } /** * This returns true if the Alpha channel of the image will be encoded * * @return - true if the Alpha channel of the image will be encoded */ public boolean isEncodeAlpha() { return encodeAlpha; } /** * If this is set to true then the Alpha channel of the image will be encoded. * By this value is true by default. * * @param b - true if the Alpha channel of the image is to be encoded */ public void setEncodeAlpha(boolean b) { encodeAlpha = b; } } /** * The InternalPngEncoderB class is the original * com.keypoint.PngEncoderB class. It has been renamed to fit * under the echoPoint ImageEncoder scheme. * * @author J. David Eisenberg * @version 1.5, 19 Oct 2003 * */ class InternalPngEncoderB extends InternalPngEncoderA { /** PLTE tag. */ private static final byte PLTE[] = { 80, 76, 84, 69 }; protected BufferedImage image; protected WritableRaster wRaster; protected int tType; /** * Class constructor * */ public InternalPngEncoderB() { this( null, false, FILTER_NONE, 0 ); } /** * Class constructor specifying BufferedImage to encode, with no alpha channel encoding. * * @param image A Java BufferedImage object */ public InternalPngEncoderB( BufferedImage image ) { this(image, false, FILTER_NONE, 0); } /** * Class constructor specifying BufferedImage to encode, and whether to encode alpha. * * @param image A Java BufferedImage object * @param encodeAlpha Encode the alpha channel? false=no; true=yes */ public InternalPngEncoderB( BufferedImage image, boolean encodeAlpha ) { this( image, encodeAlpha, FILTER_NONE, 0 ); } /** * Class constructor specifying BufferedImage to encode, whether to encode alpha, and filter to use. * * @param image A Java BufferedImage object * @param encodeAlpha Encode the alpha channel? false=no; true=yes * @param whichFilter 0=none, 1=sub, 2=up */ public InternalPngEncoderB( BufferedImage image, boolean encodeAlpha,int whichFilter ) { this( image, encodeAlpha, whichFilter, 0 ); } /** * Class constructor specifying BufferedImage source to encode, whether to encode alpha, filter to use, and compression level * * @param image A Java BufferedImage object * @param encodeAlpha Encode the alpha channel? false=no; true=yes * @param whichFilter 0=none, 1=sub, 2=up * @param compLevel 0..9 */ public InternalPngEncoderB( BufferedImage image, boolean encodeAlpha,int whichFilter, int compLevel ) { this.image = image; this.encodeAlpha = encodeAlpha; setFilter( whichFilter ); if (compLevel >=0 && compLevel <=9) { this.compressionLevel = compLevel; } } /** * Set the BufferedImage to be encoded * * @param BufferedImage A Java BufferedImage object */ public void setImage( BufferedImage image ) { this.image = image; pngBytes = null; } /** * Creates an array of bytes that is the PNG equivalent of the current image, specifying whether to encode alpha or not. * * @param encodeAlpha boolean false=no alpha, true=encode alpha * @return an array of bytes, or null if there was a problem */ public byte[] pngEncode( boolean encodeAlpha ) { byte[] pngIdBytes = { -119, 80, 78, 71, 13, 10, 26, 10 }; if (image == null) { System.err.println("pngEncode: image is null; returning null"); return null; } width = image.getWidth( null ); height = image.getHeight( null ); if (!establishStorageInfo()) { System.err.println("pngEncode: cannot establish storage info"); return null; } /* * start with an array that is big enough to hold all the pixels * (plus filter bytes), and an extra 200 bytes for header info */ pngBytes = new byte[((width+1) * height * 3) + 200]; /* * keep track of largest byte written to the array */ maxPos = 0; bytePos = writeBytes( pngIdBytes, 0 ); // hdrPos = bytePos; writeHeader(); // dataPos = bytePos; if (writeImageData()) { writeEnd(); pngBytes = resizeByteArray( pngBytes, maxPos ); } else { System.err.println("pngEncode: writeImageData failed => null"); pngBytes = null; } return pngBytes; } /** * Creates an array of bytes that is the PNG equivalent of the current image. * Alpha encoding is determined by its setting in the constructor. * * @return an array of bytes, or null if there was a problem */ public byte[] pngEncode() { return pngEncode( encodeAlpha ); } /** * * Get and set variables that determine how picture is stored. * * Retrieves the writable raster of the buffered image, * as well its transfer type. * * Sets number of output bytes per pixel, and, if only * eight-bit bytes, turns off alpha encoding. * @return true if 1-byte or 4-byte data, false otherwise */ protected boolean establishStorageInfo() { int dataBytes; wRaster = image.getRaster(); dataBytes = wRaster.getNumDataElements(); tType = wRaster.getTransferType(); if (((tType == DataBuffer.TYPE_BYTE ) && (dataBytes == 4)) || ((tType == DataBuffer.TYPE_INT ) && (dataBytes == 1)) || // on Win 2k/ME, tType == 1, dataBytes == 1 ((tType == DataBuffer.TYPE_USHORT) && (dataBytes == 1)) ) { bytesPerPixel = (encodeAlpha) ? 4 : 3; } else if ((tType == DataBuffer.TYPE_BYTE) && (dataBytes == 1)) { bytesPerPixel = 1; encodeAlpha = false; // one-byte samples } else { System.err.println("PNG encoder cannot establish storage info:"); System.err.println(" TransferType == " + tType ); System.err.println(" NumDataElements == " + dataBytes); return false; } return true; } /** * Write a PNG "IHDR" chunk into the pngBytes array. */ protected void writeHeader() { int startPos; startPos = bytePos = writeInt4( 13, bytePos ); bytePos = writeBytes( IHDR, bytePos ); width = image.getWidth( null ); height = image.getHeight( null ); bytePos = writeInt4( width, bytePos ); bytePos = writeInt4( height, bytePos ); bytePos = writeByte( 8, bytePos ); // bit depth if (bytesPerPixel != 1) { bytePos = writeByte( (encodeAlpha) ? 6 : 2, bytePos ); // direct model } else { bytePos = writeByte( 3, bytePos ); // indexed } bytePos = writeByte( 0, bytePos ); // compression method bytePos = writeByte( 0, bytePos ); // filter method bytePos = writeByte( 0, bytePos ); // no interlace crc.reset(); crc.update( pngBytes, startPos, bytePos-startPos ); crcValue = crc.getValue(); bytePos = writeInt4( (int) crcValue, bytePos ); } protected void writePalette( IndexColorModel icm ) { byte[] redPal = new byte[256]; byte[] greenPal = new byte[256]; byte[] bluePal = new byte[256]; byte[] allPal = new byte[768]; int i; icm.getReds( redPal ); icm.getGreens( greenPal ); icm.getBlues( bluePal ); for (i=0; i<256; i++) { allPal[i*3 ] = redPal[i]; allPal[i*3+1] = greenPal[i]; allPal[i*3+2] = bluePal[i]; } bytePos = writeInt4( 768, bytePos ); bytePos = writeBytes( PLTE, bytePos ); crc.reset(); crc.update( PLTE ); bytePos = writeBytes( allPal, bytePos ); crc.update( allPal ); crcValue = crc.getValue(); bytePos = writeInt4( (int) crcValue, bytePos ); } /** * Write the image data into the pngBytes array. * This will write one or more PNG "IDAT" chunks. In order * to conserve memory, this method grabs as many rows as will * fit into 32K bytes, or the whole image; whichever is less. * * * @return true if no errors; false if error grabbing pixels */ protected boolean writeImageData() { int rowsLeft = height; // number of rows remaining to write int startRow = 0; // starting row to process this time through int nRows; // how many rows to grab at a time byte[] scanLines; // the scan lines to be compressed int scanPos; // where we are in the scan lines int startPos; // where this line's actual pixels start (used for filtering) int readPos; // position from which source pixels are read byte[] compressedLines; // the resultant compressed lines int nCompressed; // how big is the compressed area? byte[] pixels; // storage area for byte-sized pixels int[] iPixels; // storage area for int-sized pixels short[] sPixels; // for Win 2000/ME ushort pixels final int type = image.getType(); // TYPE_INT_RGB = 1 // TYPE_INT_ARGB = 2 // TYPE_INT_ARGB_PRE = 3 // TYPE_INT_BGR = 4 // TYPE_3BYTE_BGR = 5 // TYPE_4BYTE_ABGR = 6 // TYPE_4BYTE_ABGR_PRE = 7 // TYPE_BYTE_GRAY = 10 // TYPE_BYTE_BINARY = 12 // TYPE_BYTE_INDEXED = 13 // TYPE_USHORT_GRAY = 11 // TYPE_USHORT_565_RGB = 8 // TYPE_USHORT_555_RGB = 9 // TYPE_CUSTOM = 0. Deflater scrunch = new Deflater( compressionLevel ); ByteArrayOutputStream outBytes = new ByteArrayOutputStream(1024); DeflaterOutputStream compBytes = new DeflaterOutputStream( outBytes, scrunch ); if (bytesPerPixel == 1) { writePalette( (IndexColorModel) image.getColorModel() ); } try { while (rowsLeft > 0) { nRows = Math.min( 32767 / (width*(bytesPerPixel+1)), rowsLeft ); nRows = Math.max( nRows, 1 ); /* * Create a data chunk. scanLines adds "nRows" for * the filter bytes. */ scanLines = new byte[width * nRows * bytesPerPixel + nRows]; if (filter == FILTER_SUB) { leftBytes = new byte[16]; } if (filter == FILTER_UP) { priorRow = new byte[width*bytesPerPixel]; } final Object data = wRaster.getDataElements( 0, startRow, width, nRows, null ); pixels = null; iPixels = null; sPixels = null; if (tType == DataBuffer.TYPE_BYTE) { pixels = (byte[]) data; } else if (tType == DataBuffer.TYPE_INT) { iPixels = (int[]) data; } else if (tType == DataBuffer.TYPE_USHORT) { sPixels = (short[]) data; } scanPos = 0; readPos = 0; startPos = 1; for (int i=0; i> 8) & 0xf8); scanLines[scanPos++] = (byte) ((pxl >> 2) & 0xfc); } else { // assume USHORT_555_RGB scanLines[scanPos++] = (byte) ((pxl >> 7) & 0xf8); scanLines[scanPos++] = (byte) ((pxl >> 2) & 0xf8); } scanLines[scanPos++] = (byte) ((pxl << 3) & 0xf8); } else // assume tType INT and type RGB or ARGB { int pxl = iPixels[readPos++]; scanLines[scanPos++] = (byte) ((pxl >> 16) & 0xff); scanLines[scanPos++] = (byte) ((pxl >> 8) & 0xff); scanLines[scanPos++] = (byte) ((pxl ) & 0xff); if (encodeAlpha) { scanLines[scanPos++] = (byte) ((pxl >> 24) & 0xff); } } if ((i % width == width-1) && (filter != FILTER_NONE)) { if (filter == FILTER_SUB) { filterSub( scanLines, startPos, width ); } if (filter == FILTER_UP) { filterUp( scanLines, startPos, width ); } } } /* * Write these lines to the output area */ compBytes.write( scanLines, 0, scanPos ); startRow += nRows; rowsLeft -= nRows; } compBytes.close(); /* * Write the compressed bytes */ compressedLines = outBytes.toByteArray(); nCompressed = compressedLines.length; crc.reset(); bytePos = writeInt4( nCompressed, bytePos ); bytePos = writeBytes( IDAT, bytePos ); crc.update( IDAT ); bytePos = writeBytes( compressedLines, nCompressed, bytePos ); crc.update( compressedLines, 0, nCompressed ); crcValue = crc.getValue(); bytePos = writeInt4( (int) crcValue, bytePos ); scrunch.finish(); return true; } catch (IOException e) { System.err.println( e.toString()); return false; } } } /** * The InternalPngEncoderA class is the original * com.keypoint.PngEncoder class. It has been renamed to fit * under the echoPoint ImageEncoder scheme. * * @author J. David Eisenberg * @version 1.5, 19 Oct 2003 * */ class InternalPngEncoderA extends Object { /** Constant specifying that alpha channel should be encoded. */ public static final boolean ENCODE_ALPHA = true; /** Constant specifying that alpha channel should not be encoded. */ public static final boolean NO_ALPHA = false; /** Constants for filter (NONE) */ public static final int FILTER_NONE = 0; /** Constants for filter (SUB) */ public static final int FILTER_SUB = 1; /** Constants for filter (UP) */ public static final int FILTER_UP = 2; /** Constants for filter (LAST) */ public static final int FILTER_LAST = 2; /** IHDR tag. */ protected static final byte IHDR[] = {73, 72, 68, 82}; /** IDAT tag. */ protected static final byte IDAT[] = {73, 68, 65, 84}; /** IEND tag. */ protected static final byte IEND[] = {73, 69, 78, 68}; /** The png bytes. */ protected byte[] pngBytes; /** The prior row. */ protected byte[] priorRow; /** The left bytes. */ protected byte[] leftBytes; /** The image. */ protected Image image; /** The width. */ protected int width, height; /** The byte position. */ protected int bytePos, maxPos; /** CRC. */ protected CRC32 crc = new CRC32(); /** The CRC value. */ protected long crcValue; /** Encode alpha? */ protected boolean encodeAlpha; /** The filter type. */ protected int filter; /** The bytes-per-pixel. */ protected int bytesPerPixel; /** The compression level. */ protected int compressionLevel; /** * Class constructor */ public InternalPngEncoderA() { this(null, false, FILTER_NONE, 0); } /** * Class constructor specifying Image to encode, with no alpha channel encoding. * * @param image A Java Image object which uses the DirectColorModel * @see java.awt.Image */ public InternalPngEncoderA(Image image) { this(image, false, FILTER_NONE, 0); } /** * Class constructor specifying Image to encode, and whether to encode alpha. * * @param image A Java Image object which uses the DirectColorModel * @param encodeAlpha Encode the alpha channel? false=no; true=yes * @see java.awt.Image */ public InternalPngEncoderA(Image image, boolean encodeAlpha) { this(image, encodeAlpha, FILTER_NONE, 0); } /** * Class constructor specifying Image to encode, whether to encode alpha, and filter to use. * * @param image A Java Image object which uses the DirectColorModel * @param encodeAlpha Encode the alpha channel? false=no; true=yes * @param whichFilter 0=none, 1=sub, 2=up * @see java.awt.Image */ public InternalPngEncoderA(Image image, boolean encodeAlpha, int whichFilter) { this(image, encodeAlpha, whichFilter, 0); } /** * Class constructor specifying Image source to encode, whether to encode alpha, filter to use, * and compression level. * * @param image A Java Image object * @param encodeAlpha Encode the alpha channel? false=no; true=yes * @param whichFilter 0=none, 1=sub, 2=up * @param compLevel 0..9 * @see java.awt.Image */ public InternalPngEncoderA(Image image, boolean encodeAlpha, int whichFilter, int compLevel) { this.image = image; this.encodeAlpha = encodeAlpha; setFilter(whichFilter); if (compLevel >= 0 && compLevel <= 9) { this.compressionLevel = compLevel; } } /** * Encodes to an outputstream with bytes that are the PNG * equivalent of the current image. * * Alpha encoding is determined by its setting in the constructor. * * @param out OutputStream the destination ouotput stream * @throws IOException */ public void encode(OutputStream out) throws IOException { out.write(pngEncode()); } /** * Encodes to an output stream with bytes that are the PNG * equivalent of the current image, specifying whether to * encode alpha or not. * * @param out OutputStream the destination ouotput stream * @param encodeAlpha boolean false=no alpha, true=encode alpha * @throws IOException */ public void encode(OutputStream out, boolean encodeAlpha) throws IOException { out.write(pngEncode(encodeAlpha)); } /** * Set the image to be encoded * * @param image A Java Image object which uses the DirectColorModel * @see java.awt.Image * @see java.awt.image.DirectColorModel */ public void setImage(Image image) { this.image = image; pngBytes = null; } /** * Creates an array of bytes that is the PNG equivalent of the current image, specifying * whether to encode alpha or not. * * @param encodeAlpha boolean false=no alpha, true=encode alpha * @return an array of bytes, or null if there was a problem */ public byte[] pngEncode(boolean encodeAlpha) { byte[] pngIdBytes = {-119, 80, 78, 71, 13, 10, 26, 10}; if (image == null) { return null; } width = image.getWidth(null); height = image.getHeight(null); /* * start with an array that is big enough to hold all the pixels * (plus filter bytes), and an extra 200 bytes for header info */ pngBytes = new byte[((width + 1) * height * 3) + 200]; /* * keep track of largest byte written to the array */ maxPos = 0; bytePos = writeBytes(pngIdBytes, 0); //hdrPos = bytePos; writeHeader(); //dataPos = bytePos; if (writeImageData()) { writeEnd(); pngBytes = resizeByteArray(pngBytes, maxPos); } else { pngBytes = null; } return pngBytes; } /** * Creates an array of bytes that is the PNG equivalent of the current image. * Alpha encoding is determined by its setting in the constructor. * * @return an array of bytes, or null if there was a problem */ public byte[] pngEncode() { return pngEncode(encodeAlpha); } /** * Set the alpha encoding on or off. * * @param encodeAlpha false=no, true=yes */ public void setEncodeAlpha(boolean encodeAlpha) { this.encodeAlpha = encodeAlpha; } /** * Retrieve alpha encoding status. * * @return boolean false=no, true=yes */ public boolean getEncodeAlpha() { return encodeAlpha; } /** * Set the filter to use * * @param whichFilter from constant list */ public void setFilter(int whichFilter) { this.filter = FILTER_NONE; if (whichFilter <= FILTER_LAST) { this.filter = whichFilter; } } /** * Retrieve filtering scheme * * @return int (see constant list) */ public int getFilter() { return filter; } /** * Set the compression level to use * * @param level 0 through 9 */ public void setCompressionLevel(int level) { if (level >= 0 && level <= 9) { this.compressionLevel = level; } } /** * Retrieve compression level * * @return int in range 0-9 */ public int getCompressionLevel() { return compressionLevel; } /** * Increase or decrease the length of a byte array. * * @param array The original array. * @param newLength The length you wish the new array to have. * @return Array of newly desired length. If shorter than the * original, the trailing elements are truncated. */ protected byte[] resizeByteArray(byte[] array, int newLength) { byte[] newArray = new byte[newLength]; int oldLength = array.length; System.arraycopy(array, 0, newArray, 0, Math.min(oldLength, newLength)); return newArray; } /** * Write an array of bytes into the pngBytes array. * Note: This routine has the side effect of updating * maxPos, the largest element written in the array. * The array is resized by 1000 bytes or the length * of the data to be written, whichever is larger. * * @param data The data to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeBytes(byte[] data, int offset) { maxPos = Math.max(maxPos, offset + data.length); if (data.length + offset > pngBytes.length) { pngBytes = resizeByteArray(pngBytes, pngBytes.length + Math.max(1000, data.length)); } System.arraycopy(data, 0, pngBytes, offset, data.length); return offset + data.length; } /** * Write an array of bytes into the pngBytes array, specifying number of bytes to write. * Note: This routine has the side effect of updating * maxPos, the largest element written in the array. * The array is resized by 1000 bytes or the length * of the data to be written, whichever is larger. * * @param data The data to be written into pngBytes. * @param nBytes The number of bytes to be written. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeBytes(byte[] data, int nBytes, int offset) { maxPos = Math.max(maxPos, offset + nBytes); if (nBytes + offset > pngBytes.length) { pngBytes = resizeByteArray(pngBytes, pngBytes.length + Math.max(1000, nBytes)); } System.arraycopy(data, 0, pngBytes, offset, nBytes); return offset + nBytes; } /** * Write a two-byte integer into the pngBytes array at a given position. * * @param n The integer to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeInt2(int n, int offset) { byte[] temp = {(byte) ((n >> 8) & 0xff), (byte) (n & 0xff)}; return writeBytes(temp, offset); } /** * Write a four-byte integer into the pngBytes array at a given position. * * @param n The integer to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeInt4(int n, int offset) { byte[] temp = {(byte) ((n >> 24) & 0xff), (byte) ((n >> 16) & 0xff), (byte) ((n >> 8) & 0xff), (byte) (n & 0xff)}; return writeBytes(temp, offset); } /** * Write a single byte into the pngBytes array at a given position. * * @param b The integer to be written into pngBytes. * @param offset The starting point to write to. * @return The next place to be written to in the pngBytes array. */ protected int writeByte(int b, int offset) { byte[] temp = {(byte) b}; return writeBytes(temp, offset); } /** * Write a PNG "IHDR" chunk into the pngBytes array. */ protected void writeHeader() { int startPos; startPos = bytePos = writeInt4(13, bytePos); bytePos = writeBytes(IHDR, bytePos); width = image.getWidth(null); height = image.getHeight(null); bytePos = writeInt4(width, bytePos); bytePos = writeInt4(height, bytePos); bytePos = writeByte(8, bytePos); // bit depth bytePos = writeByte((encodeAlpha) ? 6 : 2, bytePos); // direct model bytePos = writeByte(0, bytePos); // compression method bytePos = writeByte(0, bytePos); // filter method bytePos = writeByte(0, bytePos); // no interlace crc.reset(); crc.update(pngBytes, startPos, bytePos - startPos); crcValue = crc.getValue(); bytePos = writeInt4((int) crcValue, bytePos); } /** * Perform "sub" filtering on the given row. * Uses temporary array leftBytes to store the original values * of the previous pixels. The array is 16 bytes long, which * will easily hold two-byte samples plus two-byte alpha. * * @param pixels The array holding the scan lines being built * @param startPos Starting position within pixels of bytes to be filtered. * @param width Width of a scanline in pixels. */ protected void filterSub(byte[] pixels, int startPos, int width) { int i; int offset = bytesPerPixel; int actualStart = startPos + offset; int nBytes = width * bytesPerPixel; int leftInsert = offset; int leftExtract = 0; for (i = actualStart; i < startPos + nBytes; i++) { leftBytes[leftInsert] = pixels[i]; pixels[i] = (byte) ((pixels[i] - leftBytes[leftExtract]) % 256); leftInsert = (leftInsert + 1) % 0x0f; leftExtract = (leftExtract + 1) % 0x0f; } } /** * Perform "up" filtering on the given row. * Side effect: refills the prior row with current row * * @param pixels The array holding the scan lines being built * @param startPos Starting position within pixels of bytes to be filtered. * @param width Width of a scanline in pixels. */ protected void filterUp(byte[] pixels, int startPos, int width) { int i, nBytes; byte currentByte; nBytes = width * bytesPerPixel; for (i = 0; i < nBytes; i++) { currentByte = pixels[startPos + i]; pixels[startPos + i] = (byte) ((pixels[startPos + i] - priorRow[i]) % 256); priorRow[i] = currentByte; } } /** * Write the image data into the pngBytes array. * This will write one or more PNG "IDAT" chunks. In order * to conserve memory, this method grabs as many rows as will * fit into 32K bytes, or the whole image; whichever is less. * * * @return true if no errors; false if error grabbing pixels */ protected boolean writeImageData() { int rowsLeft = height; // number of rows remaining to write int startRow = 0; // starting row to process this time through int nRows; // how many rows to grab at a time byte[] scanLines; // the scan lines to be compressed int scanPos; // where we are in the scan lines int startPos; // where this line's actual pixels start (used for filtering) byte[] compressedLines; // the resultant compressed lines int nCompressed; // how big is the compressed area? //int depth; // color depth ( handle only 8 or 32 ) PixelGrabber pg; bytesPerPixel = (encodeAlpha) ? 4 : 3; Deflater scrunch = new Deflater(compressionLevel); ByteArrayOutputStream outBytes = new ByteArrayOutputStream(1024); DeflaterOutputStream compBytes = new DeflaterOutputStream(outBytes, scrunch); try { while (rowsLeft > 0) { nRows = Math.min(32767 / (width * (bytesPerPixel + 1)), rowsLeft); nRows = Math.max( nRows, 1 ); int[] pixels = new int[width * nRows]; pg = new PixelGrabber(image, 0, startRow, width, nRows, pixels, 0, width); try { pg.grabPixels(); } catch (Exception e) { System.err.println("interrupted waiting for pixels!"); return false; } if ((pg.getStatus() & ImageObserver.ABORT) != 0) { System.err.println("image fetch aborted or errored"); return false; } /* * Create a data chunk. scanLines adds "nRows" for * the filter bytes. */ scanLines = new byte[width * nRows * bytesPerPixel + nRows]; if (filter == FILTER_SUB) { leftBytes = new byte[16]; } if (filter == FILTER_UP) { priorRow = new byte[width * bytesPerPixel]; } scanPos = 0; startPos = 1; for (int i = 0; i < width * nRows; i++) { if (i % width == 0) { scanLines[scanPos++] = (byte) filter; startPos = scanPos; } scanLines[scanPos++] = (byte) ((pixels[i] >> 16) & 0xff); scanLines[scanPos++] = (byte) ((pixels[i] >> 8) & 0xff); scanLines[scanPos++] = (byte) ((pixels[i]) & 0xff); if (encodeAlpha) { scanLines[scanPos++] = (byte) ((pixels[i] >> 24) & 0xff); } if ((i % width == width - 1) && (filter != FILTER_NONE)) { if (filter == FILTER_SUB) { filterSub(scanLines, startPos, width); } if (filter == FILTER_UP) { filterUp(scanLines, startPos, width); } } } /* * Write these lines to the output area */ compBytes.write(scanLines, 0, scanPos); startRow += nRows; rowsLeft -= nRows; } compBytes.close(); /* * Write the compressed bytes */ compressedLines = outBytes.toByteArray(); nCompressed = compressedLines.length; crc.reset(); bytePos = writeInt4(nCompressed, bytePos); bytePos = writeBytes(IDAT, bytePos); crc.update(IDAT); bytePos = writeBytes(compressedLines, nCompressed, bytePos); crc.update(compressedLines, 0, nCompressed); crcValue = crc.getValue(); bytePos = writeInt4((int) crcValue, bytePos); scrunch.finish(); return true; } catch (IOException e) { System.err.println(e.toString()); return false; } } /** * Write a PNG "IEND" chunk into the pngBytes array. */ protected void writeEnd() { bytePos = writeInt4(0, bytePos); bytePos = writeBytes(IEND, bytePos); crc.reset(); crc.update(IEND); crcValue = crc.getValue(); bytePos = writeInt4((int) crcValue, bytePos); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy