All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.infinispan.statetransfer.StateConsumerImpl Maven / Gradle / Ivy

There is a newer version: 15.1.0.Dev04
Show newest version
package org.infinispan.statetransfer;

import static org.infinispan.context.Flag.CACHE_MODE_LOCAL;
import static org.infinispan.context.Flag.IGNORE_RETURN_VALUES;
import static org.infinispan.context.Flag.PUT_FOR_STATE_TRANSFER;
import static org.infinispan.context.Flag.SKIP_LOCKING;
import static org.infinispan.context.Flag.SKIP_OWNERSHIP_CHECK;
import static org.infinispan.context.Flag.SKIP_REMOTE_LOOKUP;
import static org.infinispan.context.Flag.SKIP_SHARED_CACHE_STORE;
import static org.infinispan.context.Flag.SKIP_XSITE_BACKUP;
import static org.infinispan.factories.KnownComponentNames.STATE_TRANSFER_EXECUTOR;
import static org.infinispan.persistence.manager.PersistenceManager.AccessMode.PRIVATE;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.PrimitiveIterator;
import java.util.Set;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Predicate;
import javax.transaction.SystemException;
import javax.transaction.TransactionManager;

import io.reactivex.Flowable;
import net.jcip.annotations.GuardedBy;
import org.infinispan.Cache;
import org.infinispan.IllegalLifecycleStateException;
import org.infinispan.commands.CommandsFactory;
import org.infinispan.commands.write.InvalidateCommand;
import org.infinispan.commands.write.PutKeyValueCommand;
import org.infinispan.commons.CacheException;
import org.infinispan.commons.util.EnumUtil;
import org.infinispan.commons.util.IntSet;
import org.infinispan.commons.util.IntSets;
import org.infinispan.commons.util.concurrent.ConcurrentHashSet;
import org.infinispan.configuration.cache.CacheMode;
import org.infinispan.configuration.cache.Configuration;
import org.infinispan.conflict.impl.InternalConflictManager;
import org.infinispan.container.entries.InternalCacheEntry;
import org.infinispan.container.impl.InternalDataContainer;
import org.infinispan.context.InvocationContext;
import org.infinispan.context.InvocationContextFactory;
import org.infinispan.context.impl.TxInvocationContext;
import org.infinispan.distexec.DistributedCallable;
import org.infinispan.distribution.DistributionInfo;
import org.infinispan.distribution.DistributionManager;
import org.infinispan.distribution.TriangleOrderManager;
import org.infinispan.distribution.ch.ConsistentHash;
import org.infinispan.distribution.ch.KeyPartitioner;
import org.infinispan.executors.LimitedExecutor;
import org.infinispan.factories.KnownComponentNames;
import org.infinispan.factories.annotations.ComponentName;
import org.infinispan.factories.annotations.Inject;
import org.infinispan.factories.annotations.Start;
import org.infinispan.factories.annotations.Stop;
import org.infinispan.factories.impl.ComponentRef;
import org.infinispan.interceptors.AsyncInterceptorChain;
import org.infinispan.metadata.impl.InternalMetadataImpl;
import org.infinispan.notifications.cachelistener.CacheNotifier;
import org.infinispan.persistence.manager.PersistenceManager;
import org.infinispan.remoting.inboundhandler.DeliverOrder;
import org.infinispan.remoting.responses.CacheNotFoundResponse;
import org.infinispan.remoting.responses.Response;
import org.infinispan.remoting.responses.SuccessfulResponse;
import org.infinispan.remoting.rpc.RpcManager;
import org.infinispan.remoting.rpc.RpcOptions;
import org.infinispan.remoting.transport.Address;
import org.infinispan.remoting.transport.impl.SingleResponseCollector;
import org.infinispan.remoting.transport.jgroups.SuspectException;
import org.infinispan.topology.CacheTopology;
import org.infinispan.topology.LocalTopologyManager;
import org.infinispan.transaction.impl.RemoteTransaction;
import org.infinispan.transaction.impl.TransactionTable;
import org.infinispan.transaction.totalorder.TotalOrderLatch;
import org.infinispan.transaction.totalorder.TotalOrderManager;
import org.infinispan.transaction.xa.CacheTransaction;
import org.infinispan.transaction.xa.GlobalTransaction;
import org.infinispan.util.concurrent.BlockingTaskAwareExecutorService;
import org.infinispan.util.concurrent.CommandAckCollector;
import org.infinispan.util.concurrent.CompletableFutures;
import org.infinispan.util.concurrent.TimeoutException;
import org.infinispan.util.logging.Log;
import org.infinispan.util.logging.LogFactory;
import org.reactivestreams.Publisher;

/**
 * {@link StateConsumer} implementation.
 *
 * @author [email protected]
 * @since 5.2
 */
public class StateConsumerImpl implements StateConsumer {
   private static final Log log = LogFactory.getLog(StateConsumerImpl.class);
   private static final boolean trace = log.isTraceEnabled();
   protected static final int NO_STATE_TRANSFER_IN_PROGRESS = -1;
   protected static final long STATE_TRANSFER_FLAGS = EnumUtil.bitSetOf(PUT_FOR_STATE_TRANSFER, CACHE_MODE_LOCAL,
                                                                      IGNORE_RETURN_VALUES, SKIP_REMOTE_LOOKUP,
                                                                      SKIP_SHARED_CACHE_STORE, SKIP_OWNERSHIP_CHECK,
                                                                      SKIP_XSITE_BACKUP);

   @Inject protected ComponentRef cache;
   @Inject protected LocalTopologyManager localTopologyManager;
   @Inject protected Configuration configuration;
   @Inject protected RpcManager rpcManager;
   @Inject protected TransactionManager transactionManager;   // optional
   @Inject protected CommandsFactory commandsFactory;
   @Inject protected TransactionTable transactionTable;       // optional
   @Inject protected InternalDataContainer dataContainer;
   @Inject protected PersistenceManager persistenceManager;
   @Inject protected AsyncInterceptorChain interceptorChain;
   @Inject protected InvocationContextFactory icf;
   @Inject protected StateTransferLock stateTransferLock;
   @Inject protected CacheNotifier cacheNotifier;
   @Inject protected TotalOrderManager totalOrderManager;
   @Inject @ComponentName(KnownComponentNames.REMOTE_COMMAND_EXECUTOR)
   protected BlockingTaskAwareExecutorService remoteCommandsExecutor;
   @Inject protected CommitManager commitManager;
   @Inject @ComponentName(STATE_TRANSFER_EXECUTOR)
   protected ExecutorService stateTransferExecutor;
   @Inject protected CommandAckCollector commandAckCollector;
   @Inject protected TriangleOrderManager triangleOrderManager;
   @Inject protected DistributionManager distributionManager;
   @Inject protected KeyPartitioner keyPartitioner;
   @Inject private InternalConflictManager conflictManager;

   protected String cacheName;
   protected long timeout;
   protected boolean isFetchEnabled;
   protected boolean isTransactional;
   protected boolean isInvalidationMode;
   protected boolean isTotalOrder;
   protected volatile KeyInvalidationListener keyInvalidationListener; //for test purpose only!

   protected volatile CacheTopology cacheTopology;
   // The first topology in which the local node was a member. Any command with a lower
   // topology id will be ignored.
   private volatile int firstTopologyAsMember = Integer.MAX_VALUE;

   /**
    * Indicates if there is a state transfer in progress. It is set to the new topology id when onTopologyUpdate with
    * isRebalance==true is called.
    * It is changed back to NO_REBALANCE_IN_PROGRESS when a topology update with a null pending CH is received.
    */
   protected final AtomicInteger stateTransferTopologyId = new AtomicInteger(NO_STATE_TRANSFER_IN_PROGRESS);

   /**
    * Indicates if there is a rebalance in progress and there the local node has not yet received
    * all the new segments yet. It is set to true when rebalance starts and becomes when all inbound transfers have completed
    * (before stateTransferTopologyId is set back to NO_REBALANCE_IN_PROGRESS).
    */
   protected final AtomicBoolean waitingForState = new AtomicBoolean(false);
   protected CompletableFuture stateTransferFuture = CompletableFutures.completedNull();

   protected final Object transferMapsLock = new Object();

   /**
    * A map that keeps track of current inbound state transfers by source address. There could be multiple transfers
    * flowing in from the same source (but for different segments) so the values are lists. This works in tandem with
    * transfersBySegment so they always need to be kept in sync and updates to both of them need to be atomic.
    */
   @GuardedBy("transferMapsLock")
   private final Map> transfersBySource = new HashMap<>();

   /**
    * A map that keeps track of current inbound state transfers by segment id. There is at most one transfers per segment.
    * This works in tandem with transfersBySource so they always need to be kept in sync and updates to both of them
    * need to be atomic.
    */
   @GuardedBy("transferMapsLock")
   protected final Map> transfersBySegment = new HashMap<>();

   /**
    * Push RPCs on a background thread
    */
   protected LimitedExecutor stateRequestExecutor;

   private volatile boolean ownsData = false;

   // Use the state transfer timeout for RPCs instead of the regular remote timeout
   protected RpcOptions rpcOptions;
   private volatile boolean running;

   public StateConsumerImpl() {
   }

   /**
    * Stops applying incoming state. Also stops tracking updated keys. Should be called at the end of state transfer or
    * when a ClearCommand is committed during state transfer.
    */
   @Override
   public void stopApplyingState(int topologyId) {
      if (trace) log.tracef("Stop keeping track of changed keys for state transfer in topology %d", topologyId);
      commitManager.stopTrack(PUT_FOR_STATE_TRANSFER);
   }

   public boolean hasActiveTransfers() {
      synchronized (transferMapsLock) {
         return !transfersBySource.isEmpty();
      }
   }

   @Override
   public boolean isStateTransferInProgress() {
      return stateTransferTopologyId.get() != NO_STATE_TRANSFER_IN_PROGRESS;
   }

   @Override
   public boolean isStateTransferInProgressForKey(Object key) {
      if (isInvalidationMode) {
         // In invalidation mode it is of not much relevance if the key is actually being transferred right now.
         // A false response to this will just mean the usual remote lookup before a write operation is not
         // performed and a null is assumed. But in invalidation mode the user must expect the data can disappear
         // from cache at any time so this null previous value should not cause any trouble.
         return false;
      }

      DistributionInfo distributionInfo = distributionManager.getCacheTopology().getDistribution(key);
      return distributionInfo.isWriteOwner() && !distributionInfo.isReadOwner();
   }

   @Override
   public boolean ownsData() {
      return ownsData;
   }

   @Override
   public CompletableFuture onTopologyUpdate(final CacheTopology cacheTopology, final boolean isRebalance) {
      final boolean isMember = cacheTopology.getMembers().contains(rpcManager.getAddress());
      final boolean startConflictResolution = !isRebalance && cacheTopology.getPhase() == CacheTopology.Phase.CONFLICT_RESOLUTION;
      if (trace) log.tracef("Received new topology for cache %s, isRebalance = %b, isMember = %b, topology = %s", cacheName, isRebalance, isMember, cacheTopology);

      if (!ownsData && isMember) {
         ownsData = true;
      } else if (ownsData && !isMember) {
         // This can happen after a merge, if the local node was in a minority partition.
         ownsData = false;
      }

      // If a member leaves/crashes immediately after a rebalance was started, the new CH_UPDATE
      // command may be executed before the REBALANCE_START command, so it has to start the rebalance.
      boolean startRebalance = isRebalance;
      if (!isRebalance && !startConflictResolution) {
         if (cacheTopology.getPendingCH() != null && this.cacheTopology.getPendingCH() == null) {
            if (trace) log.tracef("Forcing startRebalance = true");
            startRebalance = true;
         }
      }
      if (startRebalance) {
         // Only update the rebalance topology id when starting the rebalance, as we're going to ignore any state
         // response with a smaller topology id
         stateTransferTopologyId.compareAndSet(NO_STATE_TRANSFER_IN_PROGRESS, cacheTopology.getTopologyId());
         conflictManager.cancelVersionRequests();
         cacheNotifier.notifyDataRehashed(cacheTopology.getCurrentCH(), cacheTopology.getPendingCH(),
               cacheTopology.getUnionCH(), cacheTopology.getTopologyId(), true);
      }

      if (startConflictResolution) {
         // This stops state being applied from a prior rebalance and also prevents tracking from being stopped
         stateTransferTopologyId.set(NO_STATE_TRANSFER_IN_PROGRESS);
      }

      awaitTotalOrderTransactions(cacheTopology, startRebalance);

      // Make sure we don't send a REBALANCE_CONFIRM command before we've added all the transfer tasks
      // even if some of the tasks are removed and re-added
      waitingForState.set(false);
      stateTransferFuture = new CompletableFuture<>();

      final ConsistentHash newWriteCh = cacheTopology.getWriteConsistentHash();
      final CacheTopology previousCacheTopology = this.cacheTopology;
      final ConsistentHash previousReadCh =
            previousCacheTopology != null ? previousCacheTopology.getCurrentCH() : null;
      final ConsistentHash previousWriteCh =
            previousCacheTopology != null ? previousCacheTopology.getWriteConsistentHash() : null;
      // Ensures writes to the data container use the right consistent hash
      // No need for a try/finally block, since it's just an assignment
      stateTransferLock.acquireExclusiveTopologyLock();
      beforeTopologyInstalled(cacheTopology.getTopologyId(), startRebalance, previousWriteCh, newWriteCh);
      this.cacheTopology = cacheTopology;
      distributionManager.setCacheTopology(cacheTopology);

      IntSet newWriteSegments = getOwnedSegments(newWriteCh);
      // Owned segments
      dataContainer.addSegments(newWriteSegments);
      persistenceManager.addSegments(newWriteSegments);

      // We need to track changes so that user puts during conflict resolution are prioritised over MergePolicy updates
      // Tracking is stopped once the subsequent rebalance completes
      if (startRebalance || startConflictResolution) {
         if (trace) log.tracef("Start keeping track of keys for rebalance");
         commitManager.stopTrack(PUT_FOR_STATE_TRANSFER);
         commitManager.startTrack(PUT_FOR_STATE_TRANSFER);
      }
      stateTransferLock.releaseExclusiveTopologyLock();
      stateTransferLock.notifyTopologyInstalled(cacheTopology.getTopologyId());
      remoteCommandsExecutor.checkForReadyTasks();

      final boolean wasMember = previousWriteCh != null && previousWriteCh.getMembers().contains(rpcManager.getAddress());
      try {
         if (!wasMember && isMember) {
            fetchClusterListeners(cacheTopology);
         }

         // fetch transactions and data segments from other owners if this is enabled
         if (!startConflictResolution && (isTransactional || isFetchEnabled)) {
            IntSet addedSegments, removedSegments;
            if (previousWriteCh == null) {
               // If we have any segments assigned in the initial CH, it means we are the first member.
               // If we are not the first member, we can only add segments via rebalance.
               removedSegments = IntSets.immutableEmptySet();
               addedSegments = IntSets.immutableEmptySet();

               if (trace) {
                  log.tracef("On cache %s we have: added segments: %s", cacheName, addedSegments);
               }
            } else {
               IntSet previousSegments = getOwnedSegments(previousWriteCh);

               if (newWriteSegments.size() == newWriteCh.getNumSegments()) {
                  // Optimization for replicated caches
                  removedSegments = IntSets.immutableEmptySet();
               } else {
                  removedSegments = IntSets.mutableCopyFrom(previousSegments);
                  removedSegments.removeAll(newWriteSegments);
               }

               // This is a rebalance, we need to request the segments we own in the new CH.
               addedSegments = IntSets.mutableCopyFrom(newWriteSegments);
               addedSegments.removeAll(previousSegments);

               if (trace) {
                  log.tracef("On cache %s we have: new segments: %s; old segments: %s", cacheName, newWriteSegments, previousSegments);
                  log.tracef("On cache %s we have: added segments: %s; removed segments: %s", cacheName, addedSegments, removedSegments);
               }

               // remove inbound transfers for segments we no longer own
               cancelTransfers(removedSegments);

               // Scattered cache gets added segments on the first CH_UPDATE, and we want to keep these
               if (!startRebalance && !addedSegments.isEmpty() && !configuration.clustering().cacheMode().isScattered()) {
                  // If the last owner of a segment leaves the cluster, a new set of owners is assigned,
                  // but the new owners should not try to retrieve the segment from each other.
                  // If this happens during a rebalance, we might have already sent our rebalance
                  // confirmation, so the coordinator won't wait for us to retrieve those segments anyway.
                  log.debugf("Not requesting segments %s because the last owner left the cluster",
                        addedSegments);
                  addedSegments.clear();
               }

               // check if any of the existing transfers should be restarted from a different source because
               // the initial source is no longer a member
               restartBrokenTransfers(cacheTopology, addedSegments);
            }

            handleSegments(startRebalance, addedSegments, removedSegments);
         }

         int stateTransferTopologyId = this.stateTransferTopologyId.get();
         if (trace) log.tracef("Topology update processed, stateTransferTopologyId = %d, startRebalance = %s, pending CH = %s",
               (Object)stateTransferTopologyId, startRebalance, cacheTopology.getPendingCH());
         if (stateTransferTopologyId != NO_STATE_TRANSFER_IN_PROGRESS && !startRebalance && !cacheTopology.getPhase().isRebalance()) {
            // we have received a topology update without a pending CH, signalling the end of the rebalance
            boolean changed = this.stateTransferTopologyId.compareAndSet(stateTransferTopologyId, NO_STATE_TRANSFER_IN_PROGRESS);
            if (changed) {
               stopApplyingState(stateTransferTopologyId);

               // if the coordinator changed, we might get two concurrent topology updates,
               // but we only want to notify the @DataRehashed listeners once
               ConsistentHash nextConsistentHash = cacheTopology.getPendingCH();
               if (nextConsistentHash == null) {
                  nextConsistentHash = cacheTopology.getCurrentCH();
               }
               cacheNotifier.notifyDataRehashed(previousReadCh, nextConsistentHash, previousWriteCh,
                     cacheTopology.getTopologyId(), false);

               if (trace) {
                  log.tracef("Unlock State Transfer in Progress for topology ID %s", cacheTopology.getTopologyId());
               }
               if (isTotalOrder) {
                  totalOrderManager.notifyStateTransferEnd();
               }
            }
         }
      } finally {
         stateTransferLock.notifyTransactionDataReceived(cacheTopology.getTopologyId());
         remoteCommandsExecutor.checkForReadyTasks();

         // Only set the flag here, after all the transfers have been added to the transfersBySource map
         if (stateTransferTopologyId.get() != NO_STATE_TRANSFER_IN_PROGRESS && isMember) {
            waitingForState.set(true);
         }

         notifyEndOfStateTransferIfNeeded();

         // Remove the transactions whose originators have left the cache.
         // Need to do it now, after we have applied any transactions from other nodes,
         // and after notifyTransactionDataReceived - otherwise the RollbackCommands would block.
         try {
            if (transactionTable != null) {
               transactionTable.cleanupLeaverTransactions(rpcManager.getTransport().getMembers());
            }
         } catch (Exception e) {
            // Do not fail state transfer when the cleanup fails. See ISPN-7437 for details.
            log.transactionCleanupError(e);
         }

         commandAckCollector.onMembersChange(newWriteCh.getMembers());

         // The rebalance (READ_OLD_WRITE_ALL/TRANSITORY) is completed through notifyEndOfStateTransferIfNeeded
         // and STABLE does not have to be confirmed at all
         switch (cacheTopology.getPhase()) {
            case READ_ALL_WRITE_ALL:
            case READ_NEW_WRITE_ALL:
               stateTransferFuture.complete(null);
         }

         // Any data for segments we do not own should be removed from data container and cache store
         // We need to discard data from all segments we don't own, not just those we previously owned,
         // when we lose membership (e.g. because there was a merge, the local partition was in degraded mode
         // and the other partition was available) or when L1 is enabled.
         if ((isMember || wasMember) && cacheTopology.getPhase() == CacheTopology.Phase.NO_REBALANCE) {
            int numSegments = newWriteCh.getNumSegments();
            IntSet removedSegments = IntSets.mutableEmptySet(numSegments);
            IntSet newSegments = getOwnedSegments(newWriteCh);
            for (int i = 0; i < numSegments; ++i) {
               if (!newSegments.contains(i)) {
                  removedSegments.add(i);
               }
            }

            try {
               removeStaleData(removedSegments);
            } catch (InterruptedException e) {
               Thread.currentThread().interrupt();
               throw new CacheException(e);
            }
            conflictManager.restartVersionRequests();
         }
      }
      return stateTransferFuture;
   }

   private void fetchClusterListeners(CacheTopology cacheTopology) {
      if (configuration.clustering().cacheMode().isDistributed() || configuration.clustering().cacheMode().isScattered()) {
         Collection callables = getClusterListeners(cacheTopology);
         for (DistributedCallable callable : callables) {
            callable.setEnvironment(cache.wired(), null);
            try {
               callable.call();
            } catch (Exception e) {
               log.clusterListenerInstallationFailure(e);
            }
         }
      }
   }

   protected void beforeTopologyInstalled(int topologyId, boolean startRebalance, ConsistentHash previousWriteCh, ConsistentHash newWriteCh) {
   }

   protected void handleSegments(boolean startRebalance, IntSet addedSegments, IntSet removedSegments) {
      if (!addedSegments.isEmpty()) {
         // add transfers for new or restarted segments
         addTransfers(addedSegments);
      }
   }

   private void awaitTotalOrderTransactions(CacheTopology cacheTopology, boolean isRebalance) {
      //in total order, we should wait for remote transactions before proceeding
      if (isTotalOrder) {
         if (trace) {
            log.trace("State Transfer in Total Order cache. Waiting for remote transactions to finish");
         }
         try {
            for (TotalOrderLatch block : totalOrderManager.notifyStateTransferStart(cacheTopology.getTopologyId(), isRebalance)) {
               block.awaitUntilUnBlock();
            }
         } catch (InterruptedException e) {
            //interrupted...
            Thread.currentThread().interrupt();
            throw new CacheException(e);
         }
         if (trace) {
            log.trace(
                  "State Transfer in Total Order cache. All remote transactions are finished. Moving on...");
         }
      }
   }

   protected boolean notifyEndOfStateTransferIfNeeded() {
      if (waitingForState.get()) {
         if (hasActiveTransfers()) {
            if (trace)
               log.tracef("No end of state transfer notification, active transfers still exist");
            return false;
         }
         if (waitingForState.compareAndSet(true, false)) {
            int topologyId = stateTransferTopologyId.get();
            log.debugf("Finished receiving of segments for cache %s for topology %d.", cacheName, topologyId);
            stopApplyingState(topologyId);
            stateTransferFuture.complete(null);
         }
         if (trace)
            log.tracef("No end of state transfer notification, waitingForState already set to false by another thread");
         return false;
      }
      if (trace)
         log.tracef("No end of state transfer notification, waitingForState already set to false by another thread");
      return true;
   }

   protected IntSet getOwnedSegments(ConsistentHash consistentHash) {
      Address address = rpcManager.getAddress();
      return consistentHash.getMembers().contains(address) ? IntSets.from(consistentHash.getSegmentsForOwner(address))
            : IntSets.immutableEmptySet();
   }

   @Override
   public void applyState(final Address sender, int topologyId, boolean pushTransfer, Collection stateChunks) {
      ConsistentHash wCh = cacheTopology.getWriteConsistentHash();
      // Ignore responses received after we are no longer a member
      if (!wCh.getMembers().contains(rpcManager.getAddress())) {
         if (trace) {
            log.tracef("Ignoring received state because we are no longer a member of cache %s", cacheName);
         }
         return;
      }

      // Ignore segments that we requested for a previous rebalance
      // Can happen when the coordinator leaves, and the new coordinator cancels the rebalance in progress
      int rebalanceTopologyId = stateTransferTopologyId.get();
      if (rebalanceTopologyId == NO_STATE_TRANSFER_IN_PROGRESS && !pushTransfer) {
         log.debugf("Discarding state response with topology id %d for cache %s, we don't have a state transfer in progress",
               topologyId, cacheName);
         return;
      }
      if (topologyId < rebalanceTopologyId) {
         log.debugf("Discarding state response with old topology id %d for cache %s, state transfer request topology was %b",
               topologyId, cacheName, waitingForState);
         return;
      }

      if (trace) {
         log.tracef("Before applying the received state the data container of cache %s has %d keys", cacheName,
                    dataContainer.sizeIncludingExpired());
      }
      final CountDownLatch countDownLatch = new CountDownLatch(stateChunks.size());
      if (pushTransfer) {
         // push-transfer is specific for scattered cache but this is the easiest way to integrate it
         for (StateChunk stateChunk : stateChunks) {
            if (stateChunk.getCacheEntries() != null) {
               stateTransferExecutor.submit(() -> {
                  doApplyState(sender, stateChunk.getSegmentId(), stateChunk.getCacheEntries());
                  countDownLatch.countDown();
               });
            }
         }
      } else {
         IntSet mySegments = IntSets.from(wCh.getSegmentsForOwner(rpcManager.getAddress()));
         for (StateChunk stateChunk : stateChunks) {
            stateTransferExecutor.submit(() -> {
               try {
                  applyChunk(sender, mySegments, stateChunk);
               } catch (Throwable e) {
                  log.error("Failed applying state", e);
               }
               countDownLatch.countDown();
               log.tracef("Latch %d", countDownLatch.getCount());
            });
         }
      }
      try {
         boolean await = countDownLatch.await(timeout, TimeUnit.MILLISECONDS);
         if (!await) {
            throw new TimeoutException("Timed out applying state");
         }
      } catch (InterruptedException e) {
         Thread.currentThread().interrupt();
         throw new CacheException(e);
      }

      if (trace) {
         log.tracef("After applying the received state the data container of cache %s has %d keys", cacheName,
                    dataContainer.sizeIncludingExpired());
         synchronized (transferMapsLock) {
            log.tracef("Segments not received yet for cache %s: %s", cacheName, transfersBySource);
         }
      }
   }

   private void applyChunk(Address sender, IntSet mySegments, StateChunk stateChunk) {
      if (!mySegments.contains(stateChunk.getSegmentId())) {
         log.warnf("Discarding received cache entries for segment %d of cache %s because they do not belong to this node.", stateChunk.getSegmentId(), cacheName);
         return;
      }

      // Notify the inbound task that a chunk of cache entries was received
      InboundTransferTask inboundTransfer = null;
      synchronized (transferMapsLock) {
         List inboundTransfers = transfersBySegment.get(stateChunk.getSegmentId());
         if (inboundTransfers != null) {
            inboundTransfer = inboundTransfers.stream().filter(task -> task.getSource().equals(sender)).findFirst().orElse(null);
         }
      }
      if (inboundTransfer != null) {
         if (stateChunk.getCacheEntries() != null) {
            doApplyState(sender, stateChunk.getSegmentId(), stateChunk.getCacheEntries());
         }

         inboundTransfer.onStateReceived(stateChunk.getSegmentId(), stateChunk.isLastChunk());
      } else {
         if (cache.wired().getStatus().allowInvocations()) {
            log.ignoringUnsolicitedState(sender, stateChunk.getSegmentId(), cacheName);
         }
      }
   }

   private void doApplyState(Address sender, int segmentId, Collection cacheEntries) {
      if (trace) log.tracef("Applying new state chunk for segment %d of cache %s from node %s: received %d cache entries",
            segmentId, cacheName, sender, cacheEntries.size());

      // CACHE_MODE_LOCAL avoids handling by StateTransferInterceptor and any potential locks in StateTransferLock
      boolean transactional = transactionManager != null;
      for (InternalCacheEntry e : cacheEntries) {
         try {
            InvocationContext ctx;
            if (transactional) {
               transactionManager.begin();
               ctx = icf.createInvocationContext(transactionManager.getTransaction(), true);
               ((TxInvocationContext) ctx).getCacheTransaction().setStateTransferFlag(PUT_FOR_STATE_TRANSFER);
            } else {
               // non-tx cache
               ctx = icf.createSingleKeyNonTxInvocationContext();
            }

            // CallInterceptor will preserve the timestamps if the metadata is an InternalMetadataImpl instance
            InternalMetadataImpl metadata = new InternalMetadataImpl(e);
            PutKeyValueCommand put = commandsFactory.buildPutKeyValueCommand(e.getKey(), e.getValue(), segmentId,
                                                                             metadata, STATE_TRANSFER_FLAGS);
            ctx.setLockOwner(put.getKeyLockOwner());
            interceptorChain.invoke(ctx, put);

            if (transactionManager != null) {
               transactionManager.commit();
            }
         } catch (Exception ex) {
            if (!cache.wired().getStatus().allowInvocations()) {
               log.debugf("Cache %s is shutting down, stopping state transfer", cacheName);
               break;
            } else {
               log.problemApplyingStateForKey(ex.getMessage(), e.getKey(), ex);
            }
         } finally {
            try {
               if (transactional && transactionManager.getTransaction() != null) {
                  transactionManager.rollback();
               }
            } catch (SystemException e1) {
               // Ignore
            }
         }
      }
      if (trace) log.tracef("Finished applying chunk of segment %d of cache %s", segmentId, cacheName);
   }

   private void applyTransactions(Address sender, Collection transactions, int topologyId) {
      log.debugf("Applying %d transactions for cache %s transferred from node %s", transactions.size(), cacheName, sender);
      if (isTransactional) {
         for (TransactionInfo transactionInfo : transactions) {
            GlobalTransaction gtx = transactionInfo.getGlobalTransaction();
            if (rpcManager.getAddress().equals(gtx.getAddress())) {
               continue; // it is a transaction originated in this node. can happen with partition handling
            }
            // Mark the global transaction as remote. Only used for logging, hashCode/equals ignore it.
            gtx.setRemote(true);

            CacheTransaction tx = transactionTable.getLocalTransaction(gtx);
            if (tx == null) {
               tx = transactionTable.getRemoteTransaction(gtx);
               if (tx == null) {
                  try {
                     tx = transactionTable.getOrCreateRemoteTransaction(gtx, transactionInfo.getModifications());
                     // Force this node to replay the given transaction data by making it think it is 1 behind
                     ((RemoteTransaction) tx).setLookedUpEntriesTopology(topologyId - 1);
                  } catch (Throwable t) {
                     if (trace)
                        log.tracef(t, "Failed to create remote transaction %s", gtx);
                  }
               }
            }
            if (tx != null) {
               transactionInfo.getLockedKeys().forEach(tx::addBackupLockForKey);
            }
         }
      }
   }

   // Must run after the PersistenceManager
   @Start(priority = 20)
   public void start() {
      cacheName = cache.wired().getName();
      isInvalidationMode = configuration.clustering().cacheMode().isInvalidation();
      isTransactional = configuration.transaction().transactionMode().isTransactional();
      isTotalOrder = configuration.transaction().transactionProtocol().isTotalOrder();
      timeout = configuration.clustering().stateTransfer().timeout();

      CacheMode mode = configuration.clustering().cacheMode();
      isFetchEnabled = mode.needsStateTransfer() &&
              (configuration.clustering().stateTransfer().fetchInMemoryState() || configuration.persistence().fetchPersistentState());

      rpcOptions = new RpcOptions(DeliverOrder.NONE, timeout, TimeUnit.MILLISECONDS);

      stateRequestExecutor = new LimitedExecutor("StateRequest-" + cacheName, stateTransferExecutor, 1);
      running = true;
   }

   @Stop(priority = 0)
   @Override
   public void stop() {
      if (trace) {
         log.tracef("Shutting down StateConsumer of cache %s on node %s", cacheName, rpcManager.getAddress());
      }
      running = false;

      try {
         synchronized (transferMapsLock) {
            // cancel all inbound transfers
            // make a copy and then clear both maps so that cancel doesn't interfere with the iteration
            Collection> transfers = new ArrayList<>(transfersBySource.values());
            transfersBySource.clear();
            transfersBySegment.clear();
            for (List inboundTransfers : transfers) {
               inboundTransfers.forEach(InboundTransferTask::cancel);
            }
         }

         stateRequestExecutor.shutdownNow();
      } catch (Throwable t) {
         log.errorf(t, "Failed to stop StateConsumer of cache %s on node %s", cacheName, rpcManager.getAddress());
      }
   }

   @Override
   public CacheTopology getCacheTopology() {
      return cacheTopology;
   }

   public void setKeyInvalidationListener(KeyInvalidationListener keyInvalidationListener) {
      this.keyInvalidationListener = keyInvalidationListener;
   }

   // not used in scattered cache
   private void addTransfers(IntSet segments) {
      log.debugf("Adding inbound state transfer for segments %s", segments);

      // the set of nodes that reported errors when fetching data from them - these will not be retried in this topology
      Set
excludedSources = new HashSet<>(); // the sources and segments we are going to get from each source Map sources = new HashMap<>(); if (isTransactional && !isTotalOrder) { requestTransactions(segments, sources, excludedSources); } if (isFetchEnabled) { requestSegments(segments, sources, excludedSources); } if (trace) log.tracef("Finished adding inbound state transfer for segments %s", segments, cacheName); } private void findSources(IntSet segments, Map sources, Set
excludedSources) { if (cache.wired().getStatus().isTerminated()) return; int numSegments = configuration.clustering().hash().numSegments(); IntSet segmentsWithoutSource = IntSets.mutableEmptySet(numSegments); for (PrimitiveIterator.OfInt iter = segments.iterator(); iter.hasNext(); ) { int segmentId = iter.nextInt(); Address source = findSource(segmentId, excludedSources); // ignore all segments for which there are no other owners to pull data from. // these segments are considered empty (or lost) and do not require a state transfer if (source != null) { IntSet segmentsFromSource = sources.computeIfAbsent(source, k -> IntSets.mutableEmptySet(numSegments)); segmentsFromSource.set(segmentId); } else { segmentsWithoutSource.set(segmentId); } } if (!segmentsWithoutSource.isEmpty()) { log.noLiveOwnersFoundForSegments(segmentsWithoutSource, cacheName, excludedSources); } } private Address findSource(int segmentId, Set
excludedSources) { List
owners = cacheTopology.getReadConsistentHash().locateOwnersForSegment(segmentId); if (!owners.contains(rpcManager.getAddress())) { // We prefer that transactions are sourced from primary owners. // Needed in pessimistic mode, if the originator is the primary owner of the key than the lock // command is not replicated to the backup owners. See PessimisticDistributionInterceptor.acquireRemoteIfNeeded. for (Address o : owners) { if (!o.equals(rpcManager.getAddress()) && !excludedSources.contains(o)) { return o; } } } return null; } private void requestTransactions(IntSet segments, Map sources, Set
excludedSources) { findSources(segments, sources, excludedSources); boolean seenFailures = false; while (true) { IntSet failedSegments = IntSets.mutableEmptySet(configuration.clustering().hash().numSegments()); int topologyId = cacheTopology.getTopologyId(); for (Map.Entry sourceEntry : sources.entrySet()) { Address source = sourceEntry.getKey(); IntSet segmentsFromSource = sourceEntry.getValue(); boolean failed = false; boolean exclude = false; try { Response response = getTransactions(source, segmentsFromSource, topologyId); if (response instanceof SuccessfulResponse) { List transactions = (List) ((SuccessfulResponse) response).getResponseValue(); applyTransactions(source, transactions, topologyId); } else if (response instanceof CacheNotFoundResponse) { log.debugf("Cache %s was stopped on node %s before sending transaction information", cacheName, source); failed = true; exclude = true; } else { log.unsuccessfulResponseRetrievingTransactionsForSegments(source, response); failed = true; } } catch (SuspectException e) { log.debugf("Node %s left the cluster before sending transaction information", source); failed = true; exclude = true; } catch (Exception e) { if (cache.wired().getStatus().isTerminated()) { log.debugf("Cache %s has stopped while requesting transactions", cacheName); sources.clear(); return; } else { log.failedToRetrieveTransactionsForSegments(cacheName, source, segments, e); } // The primary owner is still in the cluster, so we can't exclude it - see ISPN-4091 failed = true; } // If requesting the transactions failed we need to retry if (failed) { failedSegments.addAll(segmentsFromSource); } // If the primary owner is no longer running, we can retry on a backup owner if (exclude) { excludedSources.add(source); } } if (failedSegments.isEmpty()) { break; } // look for other sources for all failed segments seenFailures = true; sources.clear(); findSources(failedSegments, sources, excludedSources); } if (seenFailures) { // start fresh when next step starts (fetching segments) sources.clear(); } } private Collection getClusterListeners(CacheTopology topology) { for (Address source : topology.getMembers()) { // Don't send to ourselves if (!source.equals(rpcManager.getAddress())) { if (trace) { log.tracef("Requesting cluster listeners of cache %s from node %s", cacheName, source); } // get cluster listeners try { StateRequestCommand cmd = commandsFactory.buildStateRequestCommand(StateRequestCommand.Type.GET_CACHE_LISTENERS, rpcManager.getAddress(), topology.getTopologyId(), null); Response response = rpcManager.blocking( rpcManager.invokeCommand(source, cmd, SingleResponseCollector.validOnly(), rpcOptions)); if (response instanceof SuccessfulResponse) { return (Collection) ((SuccessfulResponse) response).getResponseValue(); } else { log.unsuccessfulResponseForClusterListeners(source, response); } } catch (CacheException e) { log.exceptionDuringClusterListenerRetrieval(source, e); } } } if (trace) log.trace("Unable to acquire cluster listeners from other members, assuming none are present"); return Collections.emptySet(); } private Response getTransactions(Address source, IntSet segments, int topologyId) { if (trace) { log.tracef("Requesting transactions from node %s for segments %s", source, segments); } // get transactions and locks StateRequestCommand cmd = commandsFactory.buildStateRequestCommand(StateRequestCommand.Type.GET_TRANSACTIONS, rpcManager.getAddress(), topologyId, segments); return rpcManager.blocking(rpcManager.invokeCommand(source, cmd, SingleResponseCollector.validOnly(), rpcOptions)); } // not used in scattered cache private void requestSegments(IntSet segments, Map sources, Set
excludedSources) { if (sources.isEmpty()) { findSources(segments, sources, excludedSources); } for (Map.Entry e : sources.entrySet()) { addTransfer(e.getKey(), e.getValue()); } } /** * Cancel transfers for segments we no longer own. * * @param removedSegments segments to be cancelled */ protected void cancelTransfers(IntSet removedSegments) { synchronized (transferMapsLock) { List segmentsToCancel = new ArrayList<>(removedSegments); while (!segmentsToCancel.isEmpty()) { int segmentId = segmentsToCancel.remove(0); List inboundTransfers = transfersBySegment.get(segmentId); if (inboundTransfers != null) { // we need to check the transfer was not already completed for (InboundTransferTask inboundTransfer : inboundTransfers) { IntSet cancelledSegments = IntSets.mutableCopyFrom(removedSegments); cancelledSegments.retainAll(inboundTransfer.getSegments()); segmentsToCancel.removeAll(cancelledSegments); transfersBySegment.keySet().removeAll(cancelledSegments); //this will also remove it from transfersBySource if the entire task gets cancelled inboundTransfer.cancelSegments(cancelledSegments); if (inboundTransfer.isCancelled()) { removeTransfer(inboundTransfer); } } } } } } protected void removeStaleData(final IntSet removedSegments) throws InterruptedException { log.debugf("Removing no longer owned entries for cache %s", cacheName); if (keyInvalidationListener != null) { keyInvalidationListener.beforeInvalidation(removedSegments, IntSets.immutableEmptySet()); } // Keys that we used to own, and need to be removed from the data container AND the cache stores final ConcurrentHashSet keysToRemove = new ConcurrentHashSet<>(); dataContainer.removeSegments(removedSegments); // We have to invoke removeSegments above on the data container. This is always done in case if L1 is enabled. L1 // store removes all the temporary entries when removeSegments is invoked. However there is no reason to mess // with the store if no segments are removed, so just exit early. if (removedSegments.isEmpty()) return; // If there are no stores that couldn't remove segments, we don't have to worry about invaliding entries if (!persistenceManager.removeSegments(removedSegments)) { return; } // gather all keys from cache store that belong to the segments that are being removed/moved to L1 try { Predicate filter = key -> { if (dataContainer.containsKey(key)) return false; int keySegment = getSegment(key); return (removedSegments.contains(keySegment)); }; Publisher publisher = persistenceManager.publishKeys( filter, PRIVATE); Flowable.fromPublisher(publisher).blockingForEach(keysToRemove::add); } catch (CacheException e) { log.failedLoadingKeysFromCacheStore(e); } if (!keysToRemove.isEmpty()) { try { InvalidateCommand invalidateCmd = commandsFactory.buildInvalidateCommand( EnumUtil.bitSetOf(CACHE_MODE_LOCAL, SKIP_LOCKING), keysToRemove.toArray()); InvocationContext ctx = icf.createNonTxInvocationContext(); ctx.setLockOwner(invalidateCmd.getKeyLockOwner()); interceptorChain.invoke(ctx, invalidateCmd); if (trace) log.tracef("Removed %d keys, data container now has %d keys", keysToRemove.size(), dataContainer.sizeIncludingExpired()); } catch (IllegalLifecycleStateException e) { // Ignore shutdown-related errors, because InvocationContextInterceptor starts rejecting commands // before any component is stopped } catch (CacheException e) { log.failedToInvalidateKeys(e); } } } /** * Check if any of the existing transfers should be restarted from a different source because the initial source is no longer a member. */ private void restartBrokenTransfers(CacheTopology cacheTopology, IntSet addedSegments) { Set
members = new HashSet<>(cacheTopology.getReadConsistentHash().getMembers()); synchronized (transferMapsLock) { for (Iterator>> it = transfersBySource.entrySet().iterator(); it.hasNext(); ) { Map.Entry> entry = it.next(); Address source = entry.getKey(); if (!members.contains(source)) { if (trace) { log.tracef("Removing inbound transfers from source %s for cache %s", source, cacheName); } List inboundTransfers = entry.getValue(); it.remove(); for (InboundTransferTask inboundTransfer : inboundTransfers) { // these segments will be restarted if they are still in new write CH if (trace) { log.tracef("Removing inbound transfers from node %s for segments %s", source, inboundTransfer.getSegments()); } IntSet unfinishedSegments = inboundTransfer.getUnfinishedSegments(); inboundTransfer.cancel(); addedSegments.addAll(unfinishedSegments); transfersBySegment.keySet().removeAll(unfinishedSegments); } } } // exclude those that are already in progress from a valid source addedSegments.removeAll(transfersBySegment.keySet()); } } private int getSegment(Object key) { // here we can use any CH version because the routing table is not involved in computing the segment return keyPartitioner.getSegment(key); } // not used in scattered cache private InboundTransferTask addTransfer(Address source, IntSet segmentsFromSource) { final InboundTransferTask inboundTransfer; synchronized (transferMapsLock) { if (trace) { log.tracef("Adding transfer from %s for segments %s", source, segmentsFromSource); } segmentsFromSource.removeAll(transfersBySegment.keySet()); // already in progress segments are excluded if (segmentsFromSource.isEmpty()) { if (trace) { log.tracef("All segments are already in progress, skipping"); } return null; } inboundTransfer = new InboundTransferTask(segmentsFromSource, source, cacheTopology.getTopologyId(), rpcManager, commandsFactory, timeout, cacheName, true); addTransfer(inboundTransfer, segmentsFromSource); } stateRequestExecutor.executeAsync(() -> { CompletableFuture transferStarted = inboundTransfer.requestSegments(); if (trace) log.tracef("Waiting for inbound transfer to finish: %s", inboundTransfer); return transferStarted.whenComplete((aVoid, throwable) -> onTaskCompletion(inboundTransfer)); }); return inboundTransfer; } @GuardedBy("transferMapsLock") protected void addTransfer(InboundTransferTask inboundTransfer, IntSet segments) { if (!running) throw new IllegalLifecycleStateException("State consumer is not running for cache " + cacheName); for (PrimitiveIterator.OfInt iter = segments.iterator(); iter.hasNext(); ) { int segmentId = iter.nextInt(); transfersBySegment.computeIfAbsent(segmentId, s -> new ArrayList<>()).add(inboundTransfer); } transfersBySource.computeIfAbsent(inboundTransfer.getSource(), s -> new ArrayList<>()).add(inboundTransfer); } protected boolean removeTransfer(InboundTransferTask inboundTransfer) { boolean found = false; synchronized (transferMapsLock) { if (trace) log.tracef("Removing inbound transfers from node %s for segments %s", inboundTransfer.getSegments(), inboundTransfer.getSource(), cacheName); List transfers = transfersBySource.get(inboundTransfer.getSource()); if (transfers != null && (found = transfers.remove(inboundTransfer)) && transfers.isEmpty()) { transfersBySource.remove(inboundTransfer.getSource()); } // Box the segment as the map uses Integer as key for (Integer segment : inboundTransfer.getSegments()) { List innerTransfers = transfersBySegment.get(segment); if (innerTransfers != null && innerTransfers.remove(inboundTransfer) && innerTransfers.isEmpty()) { transfersBySegment.remove(segment); } } } return found; } protected void onTaskCompletion(final InboundTransferTask inboundTransfer) { if (trace) log.tracef("Inbound transfer finished: %s", inboundTransfer); if (inboundTransfer.isCompletedSuccessfully()) { removeTransfer(inboundTransfer); notifyEndOfStateTransferIfNeeded(); } } public interface KeyInvalidationListener { void beforeInvalidation(IntSet removedSegments, IntSet staleL1Segments); } }