infinispan.com.google.protobuf.CodedOutputStream Maven / Gradle / Ivy
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package com.google.protobuf;
import java.io.IOException;
import java.io.OutputStream;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
/**
* Encodes and writes protocol message fields.
*
* This class contains two kinds of methods: methods that write specific
* protocol message constructs and field types (e.g. {@link #writeTag} and
* {@link #writeInt32}) and methods that write low-level values (e.g.
* {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are
* writing encoded protocol messages, you should use the former methods, but if
* you are writing some other format of your own design, use the latter.
*
*
This class is totally unsynchronized.
*
* @author [email protected] Kenton Varda
*/
public final class CodedOutputStream {
private final byte[] buffer;
private final int limit;
private int position;
private int totalBytesWritten = 0;
private final OutputStream output;
/**
* The buffer size used in {@link #newInstance(OutputStream)}.
*/
public static final int DEFAULT_BUFFER_SIZE = 4096;
/**
* Returns the buffer size to efficiently write dataLength bytes to this
* CodedOutputStream. Used by AbstractMessageLite.
*
* @return the buffer size to efficiently write dataLength bytes to this
* CodedOutputStream.
*/
static int computePreferredBufferSize(int dataLength) {
if (dataLength > DEFAULT_BUFFER_SIZE) return DEFAULT_BUFFER_SIZE;
return dataLength;
}
private CodedOutputStream(final byte[] buffer, final int offset,
final int length) {
output = null;
this.buffer = buffer;
position = offset;
limit = offset + length;
}
private CodedOutputStream(final OutputStream output, final byte[] buffer) {
this.output = output;
this.buffer = buffer;
position = 0;
limit = buffer.length;
}
/**
* Create a new {@code CodedOutputStream} wrapping the given
* {@code OutputStream}.
*/
public static CodedOutputStream newInstance(final OutputStream output) {
return newInstance(output, DEFAULT_BUFFER_SIZE);
}
/**
* Create a new {@code CodedOutputStream} wrapping the given
* {@code OutputStream} with a given buffer size.
*/
public static CodedOutputStream newInstance(final OutputStream output,
final int bufferSize) {
return new CodedOutputStream(output, new byte[bufferSize]);
}
/**
* Create a new {@code CodedOutputStream} that writes directly to the given
* byte array. If more bytes are written than fit in the array,
* {@link OutOfSpaceException} will be thrown. Writing directly to a flat
* array is faster than writing to an {@code OutputStream}. See also
* {@link ByteString#newCodedBuilder}.
*/
public static CodedOutputStream newInstance(final byte[] flatArray) {
return newInstance(flatArray, 0, flatArray.length);
}
/**
* Create a new {@code CodedOutputStream} that writes directly to the given
* byte array slice. If more bytes are written than fit in the slice,
* {@link OutOfSpaceException} will be thrown. Writing directly to a flat
* array is faster than writing to an {@code OutputStream}. See also
* {@link ByteString#newCodedBuilder}.
*/
public static CodedOutputStream newInstance(final byte[] flatArray,
final int offset,
final int length) {
return new CodedOutputStream(flatArray, offset, length);
}
/**
* Create a new {@code CodedOutputStream} that writes to the given ByteBuffer.
*/
public static CodedOutputStream newInstance(ByteBuffer byteBuffer) {
return newInstance(byteBuffer, DEFAULT_BUFFER_SIZE);
}
/**
* Create a new {@code CodedOutputStream} that writes to the given ByteBuffer.
*/
public static CodedOutputStream newInstance(ByteBuffer byteBuffer,
int bufferSize) {
return newInstance(new ByteBufferOutputStream(byteBuffer), bufferSize);
}
private static class ByteBufferOutputStream extends OutputStream {
private final ByteBuffer byteBuffer;
public ByteBufferOutputStream(ByteBuffer byteBuffer) {
this.byteBuffer = byteBuffer;
}
@Override
public void write(int b) throws IOException {
byteBuffer.put((byte) b);
}
@Override
public void write(byte[] data, int offset, int length) throws IOException {
byteBuffer.put(data, offset, length);
}
}
// -----------------------------------------------------------------
/** Write a {@code double} field, including tag, to the stream. */
public void writeDouble(final int fieldNumber, final double value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
writeDoubleNoTag(value);
}
/** Write a {@code float} field, including tag, to the stream. */
public void writeFloat(final int fieldNumber, final float value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
writeFloatNoTag(value);
}
/** Write a {@code uint64} field, including tag, to the stream. */
public void writeUInt64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt64NoTag(value);
}
/** Write an {@code int64} field, including tag, to the stream. */
public void writeInt64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeInt64NoTag(value);
}
/** Write an {@code int32} field, including tag, to the stream. */
public void writeInt32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeInt32NoTag(value);
}
/** Write a {@code fixed64} field, including tag, to the stream. */
public void writeFixed64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
writeFixed64NoTag(value);
}
/** Write a {@code fixed32} field, including tag, to the stream. */
public void writeFixed32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
writeFixed32NoTag(value);
}
/** Write a {@code bool} field, including tag, to the stream. */
public void writeBool(final int fieldNumber, final boolean value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeBoolNoTag(value);
}
/** Write a {@code string} field, including tag, to the stream. */
public void writeString(final int fieldNumber, final String value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeStringNoTag(value);
}
/** Write a {@code group} field, including tag, to the stream. */
public void writeGroup(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_START_GROUP);
writeGroupNoTag(value);
writeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP);
}
/**
* Write a group represented by an {@link UnknownFieldSet}.
*
* @deprecated UnknownFieldSet now implements MessageLite, so you can just
* call {@link #writeGroup}.
*/
@Deprecated
public void writeUnknownGroup(final int fieldNumber,
final MessageLite value)
throws IOException {
writeGroup(fieldNumber, value);
}
/** Write an embedded message field, including tag, to the stream. */
public void writeMessage(final int fieldNumber, final MessageLite value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeMessageNoTag(value);
}
/** Write a {@code bytes} field, including tag, to the stream. */
public void writeBytes(final int fieldNumber, final ByteString value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeBytesNoTag(value);
}
/** Write a {@code bytes} field, including tag, to the stream. */
public void writeByteArray(final int fieldNumber, final byte[] value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteArrayNoTag(value);
}
/** Write a {@code bytes} field, including tag, to the stream. */
public void writeByteArray(final int fieldNumber,
final byte[] value,
final int offset,
final int length)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteArrayNoTag(value, offset, length);
}
/**
* Write a {@code bytes} field, including tag, to the stream.
* This method will write all content of the ByteBuffer regardless of the
* current position and limit (i.e., the number of bytes to be written is
* value.capacity(), not value.remaining()). Furthermore, this method doesn't
* alter the state of the passed-in ByteBuffer. Its position, limit, mark,
* etc. will remain unchanged. If you only want to write the remaining bytes
* of a ByteBuffer, you can call
* {@code writeByteBuffer(fieldNumber, byteBuffer.slice())}.
*/
public void writeByteBuffer(final int fieldNumber, final ByteBuffer value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED);
writeByteBufferNoTag(value);
}
/** Write a {@code uint32} field, including tag, to the stream. */
public void writeUInt32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeUInt32NoTag(value);
}
/**
* Write an enum field, including tag, to the stream. Caller is responsible
* for converting the enum value to its numeric value.
*/
public void writeEnum(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeEnumNoTag(value);
}
/** Write an {@code sfixed32} field, including tag, to the stream. */
public void writeSFixed32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32);
writeSFixed32NoTag(value);
}
/** Write an {@code sfixed64} field, including tag, to the stream. */
public void writeSFixed64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64);
writeSFixed64NoTag(value);
}
/** Write an {@code sint32} field, including tag, to the stream. */
public void writeSInt32(final int fieldNumber, final int value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeSInt32NoTag(value);
}
/** Write an {@code sint64} field, including tag, to the stream. */
public void writeSInt64(final int fieldNumber, final long value)
throws IOException {
writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT);
writeSInt64NoTag(value);
}
/**
* Write a MessageSet extension field to the stream. For historical reasons,
* the wire format differs from normal fields.
*/
public void writeMessageSetExtension(final int fieldNumber,
final MessageLite value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
/**
* Write an unparsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
public void writeRawMessageSetExtension(final int fieldNumber,
final ByteString value)
throws IOException {
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP);
writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber);
writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value);
writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP);
}
// -----------------------------------------------------------------
/** Write a {@code double} field to the stream. */
public void writeDoubleNoTag(final double value) throws IOException {
writeRawLittleEndian64(Double.doubleToRawLongBits(value));
}
/** Write a {@code float} field to the stream. */
public void writeFloatNoTag(final float value) throws IOException {
writeRawLittleEndian32(Float.floatToRawIntBits(value));
}
/** Write a {@code uint64} field to the stream. */
public void writeUInt64NoTag(final long value) throws IOException {
writeRawVarint64(value);
}
/** Write an {@code int64} field to the stream. */
public void writeInt64NoTag(final long value) throws IOException {
writeRawVarint64(value);
}
/** Write an {@code int32} field to the stream. */
public void writeInt32NoTag(final int value) throws IOException {
if (value >= 0) {
writeRawVarint32(value);
} else {
// Must sign-extend.
writeRawVarint64(value);
}
}
/** Write a {@code fixed64} field to the stream. */
public void writeFixed64NoTag(final long value) throws IOException {
writeRawLittleEndian64(value);
}
/** Write a {@code fixed32} field to the stream. */
public void writeFixed32NoTag(final int value) throws IOException {
writeRawLittleEndian32(value);
}
/** Write a {@code bool} field to the stream. */
public void writeBoolNoTag(final boolean value) throws IOException {
writeRawByte(value ? 1 : 0);
}
/** Write a {@code string} field to the stream. */
public void writeStringNoTag(final String value) throws IOException {
// Unfortunately there does not appear to be any way to tell Java to encode
// UTF-8 directly into our buffer, so we have to let it create its own byte
// array and then copy.
final byte[] bytes = value.getBytes("UTF-8");
writeRawVarint32(bytes.length);
writeRawBytes(bytes);
}
/** Write a {@code group} field to the stream. */
public void writeGroupNoTag(final MessageLite value) throws IOException {
value.writeTo(this);
}
/**
* Write a group represented by an {@link UnknownFieldSet}.
*
* @deprecated UnknownFieldSet now implements MessageLite, so you can just
* call {@link #writeGroupNoTag}.
*/
@Deprecated
public void writeUnknownGroupNoTag(final MessageLite value)
throws IOException {
writeGroupNoTag(value);
}
/** Write an embedded message field to the stream. */
public void writeMessageNoTag(final MessageLite value) throws IOException {
writeRawVarint32(value.getSerializedSize());
value.writeTo(this);
}
/** Write a {@code bytes} field to the stream. */
public void writeBytesNoTag(final ByteString value) throws IOException {
writeRawVarint32(value.size());
writeRawBytes(value);
}
/** Write a {@code bytes} field to the stream. */
public void writeByteArrayNoTag(final byte[] value) throws IOException {
writeRawVarint32(value.length);
writeRawBytes(value);
}
/** Write a {@code bytes} field to the stream. */
public void writeByteArrayNoTag(final byte[] value,
final int offset,
final int length) throws IOException {
writeRawVarint32(length);
writeRawBytes(value, offset, length);
}
/**
* Write a {@code bytes} field to the stream. This method will write all
* content of the ByteBuffer regardless of the current position and limit
* (i.e., the number of bytes to be written is value.capacity(), not
* value.remaining()). Furthermore, this method doesn't alter the state of
* the passed-in ByteBuffer. Its position, limit, mark, etc. will remain
* unchanged. If you only want to write the remaining bytes of a ByteBuffer,
* you can call {@code writeByteBufferNoTag(byteBuffer.slice())}.
*/
public void writeByteBufferNoTag(final ByteBuffer value) throws IOException {
writeRawVarint32(value.capacity());
writeRawBytes(value);
}
/** Write a {@code uint32} field to the stream. */
public void writeUInt32NoTag(final int value) throws IOException {
writeRawVarint32(value);
}
/**
* Write an enum field to the stream. Caller is responsible
* for converting the enum value to its numeric value.
*/
public void writeEnumNoTag(final int value) throws IOException {
writeInt32NoTag(value);
}
/** Write an {@code sfixed32} field to the stream. */
public void writeSFixed32NoTag(final int value) throws IOException {
writeRawLittleEndian32(value);
}
/** Write an {@code sfixed64} field to the stream. */
public void writeSFixed64NoTag(final long value) throws IOException {
writeRawLittleEndian64(value);
}
/** Write an {@code sint32} field to the stream. */
public void writeSInt32NoTag(final int value) throws IOException {
writeRawVarint32(encodeZigZag32(value));
}
/** Write an {@code sint64} field to the stream. */
public void writeSInt64NoTag(final long value) throws IOException {
writeRawVarint64(encodeZigZag64(value));
}
// =================================================================
/**
* Compute the number of bytes that would be needed to encode a
* {@code double} field, including tag.
*/
public static int computeDoubleSize(final int fieldNumber,
final double value) {
return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code float} field, including tag.
*/
public static int computeFloatSize(final int fieldNumber, final float value) {
return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint64} field, including tag.
*/
public static int computeUInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int64} field, including tag.
*/
public static int computeInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int32} field, including tag.
*/
public static int computeInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed64} field, including tag.
*/
public static int computeFixed64Size(final int fieldNumber,
final long value) {
return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed32} field, including tag.
*/
public static int computeFixed32Size(final int fieldNumber,
final int value) {
return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bool} field, including tag.
*/
public static int computeBoolSize(final int fieldNumber,
final boolean value) {
return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code string} field, including tag.
*/
public static int computeStringSize(final int fieldNumber,
final String value) {
return computeTagSize(fieldNumber) + computeStringSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field, including tag.
*/
public static int computeGroupSize(final int fieldNumber,
final MessageLite value) {
return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field represented by an {@code UnknownFieldSet}, including
* tag.
*
* @deprecated UnknownFieldSet now implements MessageLite, so you can just
* call {@link #computeGroupSize}.
*/
@Deprecated
public static int computeUnknownGroupSize(final int fieldNumber,
final MessageLite value) {
return computeGroupSize(fieldNumber, value);
}
/**
* Compute the number of bytes that would be needed to encode an
* embedded message field, including tag.
*/
public static int computeMessageSize(final int fieldNumber,
final MessageLite value) {
return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field, including tag.
*/
public static int computeBytesSize(final int fieldNumber,
final ByteString value) {
return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field, including tag.
*/
public static int computeByteArraySize(final int fieldNumber,
final byte[] value) {
return computeTagSize(fieldNumber) + computeByteArraySizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field, including tag.
*/
public static int computeByteBufferSize(final int fieldNumber,
final ByteBuffer value) {
return computeTagSize(fieldNumber) + computeByteBufferSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* embedded message in lazy field, including tag.
*/
public static int computeLazyFieldSize(final int fieldNumber,
final LazyFieldLite value) {
return computeTagSize(fieldNumber) + computeLazyFieldSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint32} field, including tag.
*/
public static int computeUInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* enum field, including tag. Caller is responsible for converting the
* enum value to its numeric value.
*/
public static int computeEnumSize(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed32} field, including tag.
*/
public static int computeSFixed32Size(final int fieldNumber,
final int value) {
return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed64} field, including tag.
*/
public static int computeSFixed64Size(final int fieldNumber,
final long value) {
return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint32} field, including tag.
*/
public static int computeSInt32Size(final int fieldNumber, final int value) {
return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint64} field, including tag.
*/
public static int computeSInt64Size(final int fieldNumber, final long value) {
return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode a
* MessageSet extension to the stream. For historical reasons,
* the wire format differs from normal fields.
*/
public static int computeMessageSetExtensionSize(
final int fieldNumber, final MessageLite value) {
return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 +
computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) +
computeMessageSize(WireFormat.MESSAGE_SET_MESSAGE, value);
}
/**
* Compute the number of bytes that would be needed to encode an
* unparsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
public static int computeRawMessageSetExtensionSize(
final int fieldNumber, final ByteString value) {
return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 +
computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) +
computeBytesSize(WireFormat.MESSAGE_SET_MESSAGE, value);
}
/**
* Compute the number of bytes that would be needed to encode an
* lazily parsed MessageSet extension field to the stream. For
* historical reasons, the wire format differs from normal fields.
*/
public static int computeLazyFieldMessageSetExtensionSize(
final int fieldNumber, final LazyFieldLite value) {
return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 +
computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) +
computeLazyFieldSize(WireFormat.MESSAGE_SET_MESSAGE, value);
}
// -----------------------------------------------------------------
/**
* Compute the number of bytes that would be needed to encode a
* {@code double} field, including tag.
*/
public static int computeDoubleSizeNoTag(final double value) {
return LITTLE_ENDIAN_64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code float} field, including tag.
*/
public static int computeFloatSizeNoTag(final float value) {
return LITTLE_ENDIAN_32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint64} field, including tag.
*/
public static int computeUInt64SizeNoTag(final long value) {
return computeRawVarint64Size(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int64} field, including tag.
*/
public static int computeInt64SizeNoTag(final long value) {
return computeRawVarint64Size(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code int32} field, including tag.
*/
public static int computeInt32SizeNoTag(final int value) {
if (value >= 0) {
return computeRawVarint32Size(value);
} else {
// Must sign-extend.
return 10;
}
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed64} field.
*/
public static int computeFixed64SizeNoTag(final long value) {
return LITTLE_ENDIAN_64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code fixed32} field.
*/
public static int computeFixed32SizeNoTag(final int value) {
return LITTLE_ENDIAN_32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bool} field.
*/
public static int computeBoolSizeNoTag(final boolean value) {
return 1;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code string} field.
*/
public static int computeStringSizeNoTag(final String value) {
try {
final byte[] bytes = value.getBytes("UTF-8");
return computeRawVarint32Size(bytes.length) +
bytes.length;
} catch (UnsupportedEncodingException e) {
throw new RuntimeException("UTF-8 not supported.", e);
}
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field.
*/
public static int computeGroupSizeNoTag(final MessageLite value) {
return value.getSerializedSize();
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code group} field represented by an {@code UnknownFieldSet}, including
* tag.
*
* @deprecated UnknownFieldSet now implements MessageLite, so you can just
* call {@link #computeUnknownGroupSizeNoTag}.
*/
@Deprecated
public static int computeUnknownGroupSizeNoTag(final MessageLite value) {
return computeGroupSizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an embedded
* message field.
*/
public static int computeMessageSizeNoTag(final MessageLite value) {
final int size = value.getSerializedSize();
return computeRawVarint32Size(size) + size;
}
/**
* Compute the number of bytes that would be needed to encode an embedded
* message stored in lazy field.
*/
public static int computeLazyFieldSizeNoTag(final LazyFieldLite value) {
final int size = value.getSerializedSize();
return computeRawVarint32Size(size) + size;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field.
*/
public static int computeBytesSizeNoTag(final ByteString value) {
return computeRawVarint32Size(value.size()) +
value.size();
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field.
*/
public static int computeByteArraySizeNoTag(final byte[] value) {
return computeRawVarint32Size(value.length) + value.length;
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code bytes} field.
*/
public static int computeByteBufferSizeNoTag(final ByteBuffer value) {
return computeRawVarint32Size(value.capacity()) + value.capacity();
}
/**
* Compute the number of bytes that would be needed to encode a
* {@code uint32} field.
*/
public static int computeUInt32SizeNoTag(final int value) {
return computeRawVarint32Size(value);
}
/**
* Compute the number of bytes that would be needed to encode an enum field.
* Caller is responsible for converting the enum value to its numeric value.
*/
public static int computeEnumSizeNoTag(final int value) {
return computeInt32SizeNoTag(value);
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed32} field.
*/
public static int computeSFixed32SizeNoTag(final int value) {
return LITTLE_ENDIAN_32_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sfixed64} field.
*/
public static int computeSFixed64SizeNoTag(final long value) {
return LITTLE_ENDIAN_64_SIZE;
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint32} field.
*/
public static int computeSInt32SizeNoTag(final int value) {
return computeRawVarint32Size(encodeZigZag32(value));
}
/**
* Compute the number of bytes that would be needed to encode an
* {@code sint64} field.
*/
public static int computeSInt64SizeNoTag(final long value) {
return computeRawVarint64Size(encodeZigZag64(value));
}
// =================================================================
/**
* Internal helper that writes the current buffer to the output. The
* buffer position is reset to its initial value when this returns.
*/
private void refreshBuffer() throws IOException {
if (output == null) {
// We're writing to a single buffer.
throw new OutOfSpaceException();
}
// Since we have an output stream, this is our buffer
// and buffer offset == 0
output.write(buffer, 0, position);
position = 0;
}
/**
* Flushes the stream and forces any buffered bytes to be written. This
* does not flush the underlying OutputStream.
*/
public void flush() throws IOException {
if (output != null) {
refreshBuffer();
}
}
/**
* If writing to a flat array, return the space left in the array.
* Otherwise, throws {@code UnsupportedOperationException}.
*/
public int spaceLeft() {
if (output == null) {
return limit - position;
} else {
throw new UnsupportedOperationException(
"spaceLeft() can only be called on CodedOutputStreams that are " +
"writing to a flat array.");
}
}
/**
* Verifies that {@link #spaceLeft()} returns zero. It's common to create
* a byte array that is exactly big enough to hold a message, then write to
* it with a {@code CodedOutputStream}. Calling {@code checkNoSpaceLeft()}
* after writing verifies that the message was actually as big as expected,
* which can help catch bugs.
*/
public void checkNoSpaceLeft() {
if (spaceLeft() != 0) {
throw new IllegalStateException(
"Did not write as much data as expected.");
}
}
/**
* If you create a CodedOutputStream around a simple flat array, you must
* not attempt to write more bytes than the array has space. Otherwise,
* this exception will be thrown.
*/
public static class OutOfSpaceException extends IOException {
private static final long serialVersionUID = -6947486886997889499L;
OutOfSpaceException() {
super("CodedOutputStream was writing to a flat byte array and ran " +
"out of space.");
}
}
/**
* Get the total number of bytes successfully written to this stream. The
* returned value is not guaranteed to be accurate if exceptions have been
* found in the middle of writing.
*/
public int getTotalBytesWritten() {
return totalBytesWritten;
}
/** Write a single byte. */
public void writeRawByte(final byte value) throws IOException {
if (position == limit) {
refreshBuffer();
}
buffer[position++] = value;
++totalBytesWritten;
}
/** Write a single byte, represented by an integer value. */
public void writeRawByte(final int value) throws IOException {
writeRawByte((byte) value);
}
/** Write a byte string. */
public void writeRawBytes(final ByteString value) throws IOException {
writeRawBytes(value, 0, value.size());
}
/** Write an array of bytes. */
public void writeRawBytes(final byte[] value) throws IOException {
writeRawBytes(value, 0, value.length);
}
/**
* Write a ByteBuffer. This method will write all content of the ByteBuffer
* regardless of the current position and limit (i.e., the number of bytes
* to be written is value.capacity(), not value.remaining()). Furthermore,
* this method doesn't alter the state of the passed-in ByteBuffer. Its
* position, limit, mark, etc. will remain unchanged. If you only want to
* write the remaining bytes of a ByteBuffer, you can call
* {@code writeRawBytes(byteBuffer.slice())}.
*/
public void writeRawBytes(final ByteBuffer value) throws IOException {
if (value.hasArray()) {
writeRawBytes(value.array(), value.arrayOffset(), value.capacity());
} else {
ByteBuffer duplicated = value.duplicate();
duplicated.clear();
writeRawBytesInternal(duplicated);
}
}
/** Write a ByteBuffer that isn't backed by an array. */
private void writeRawBytesInternal(final ByteBuffer value)
throws IOException {
int length = value.remaining();
if (limit - position >= length) {
// We have room in the current buffer.
value.get(buffer, position, length);
position += length;
totalBytesWritten += length;
} else {
// Write extends past current buffer. Fill the rest of this buffer and
// flush.
final int bytesWritten = limit - position;
value.get(buffer, position, bytesWritten);
length -= bytesWritten;
position = limit;
totalBytesWritten += bytesWritten;
refreshBuffer();
// Now deal with the rest.
// Since we have an output stream, this is our buffer
// and buffer offset == 0
while (length > limit) {
// Copy data into the buffer before writing it to OutputStream.
// TODO(xiaofeng): Introduce ZeroCopyOutputStream to avoid this copy.
value.get(buffer, 0, limit);
output.write(buffer, 0, limit);
length -= limit;
totalBytesWritten += limit;
}
value.get(buffer, 0, length);
position = length;
totalBytesWritten += length;
}
}
/** Write part of an array of bytes. */
public void writeRawBytes(final byte[] value, int offset, int length)
throws IOException {
if (limit - position >= length) {
// We have room in the current buffer.
System.arraycopy(value, offset, buffer, position, length);
position += length;
totalBytesWritten += length;
} else {
// Write extends past current buffer. Fill the rest of this buffer and
// flush.
final int bytesWritten = limit - position;
System.arraycopy(value, offset, buffer, position, bytesWritten);
offset += bytesWritten;
length -= bytesWritten;
position = limit;
totalBytesWritten += bytesWritten;
refreshBuffer();
// Now deal with the rest.
// Since we have an output stream, this is our buffer
// and buffer offset == 0
if (length <= limit) {
// Fits in new buffer.
System.arraycopy(value, offset, buffer, 0, length);
position = length;
} else {
// Write is very big. Let's do it all at once.
output.write(value, offset, length);
}
totalBytesWritten += length;
}
}
/** Write part of a byte string. */
public void writeRawBytes(final ByteString value, int offset, int length)
throws IOException {
if (limit - position >= length) {
// We have room in the current buffer.
value.copyTo(buffer, offset, position, length);
position += length;
totalBytesWritten += length;
} else {
// Write extends past current buffer. Fill the rest of this buffer and
// flush.
final int bytesWritten = limit - position;
value.copyTo(buffer, offset, position, bytesWritten);
offset += bytesWritten;
length -= bytesWritten;
position = limit;
totalBytesWritten += bytesWritten;
refreshBuffer();
// Now deal with the rest.
// Since we have an output stream, this is our buffer
// and buffer offset == 0
if (length <= limit) {
// Fits in new buffer.
value.copyTo(buffer, offset, 0, length);
position = length;
} else {
value.writeTo(output, offset, length);
}
totalBytesWritten += length;
}
}
/** Encode and write a tag. */
public void writeTag(final int fieldNumber, final int wireType)
throws IOException {
writeRawVarint32(WireFormat.makeTag(fieldNumber, wireType));
}
/** Compute the number of bytes that would be needed to encode a tag. */
public static int computeTagSize(final int fieldNumber) {
return computeRawVarint32Size(WireFormat.makeTag(fieldNumber, 0));
}
/**
* Encode and write a varint. {@code value} is treated as
* unsigned, so it won't be sign-extended if negative.
*/
public void writeRawVarint32(int value) throws IOException {
while (true) {
if ((value & ~0x7F) == 0) {
writeRawByte(value);
return;
} else {
writeRawByte((value & 0x7F) | 0x80);
value >>>= 7;
}
}
}
/**
* Compute the number of bytes that would be needed to encode a varint.
* {@code value} is treated as unsigned, so it won't be sign-extended if
* negative.
*/
public static int computeRawVarint32Size(final int value) {
if ((value & (0xffffffff << 7)) == 0) return 1;
if ((value & (0xffffffff << 14)) == 0) return 2;
if ((value & (0xffffffff << 21)) == 0) return 3;
if ((value & (0xffffffff << 28)) == 0) return 4;
return 5;
}
/** Encode and write a varint. */
public void writeRawVarint64(long value) throws IOException {
while (true) {
if ((value & ~0x7FL) == 0) {
writeRawByte((int)value);
return;
} else {
writeRawByte(((int)value & 0x7F) | 0x80);
value >>>= 7;
}
}
}
/** Compute the number of bytes that would be needed to encode a varint. */
public static int computeRawVarint64Size(final long value) {
if ((value & (0xffffffffffffffffL << 7)) == 0) return 1;
if ((value & (0xffffffffffffffffL << 14)) == 0) return 2;
if ((value & (0xffffffffffffffffL << 21)) == 0) return 3;
if ((value & (0xffffffffffffffffL << 28)) == 0) return 4;
if ((value & (0xffffffffffffffffL << 35)) == 0) return 5;
if ((value & (0xffffffffffffffffL << 42)) == 0) return 6;
if ((value & (0xffffffffffffffffL << 49)) == 0) return 7;
if ((value & (0xffffffffffffffffL << 56)) == 0) return 8;
if ((value & (0xffffffffffffffffL << 63)) == 0) return 9;
return 10;
}
/** Write a little-endian 32-bit integer. */
public void writeRawLittleEndian32(final int value) throws IOException {
writeRawByte((value ) & 0xFF);
writeRawByte((value >> 8) & 0xFF);
writeRawByte((value >> 16) & 0xFF);
writeRawByte((value >> 24) & 0xFF);
}
public static final int LITTLE_ENDIAN_32_SIZE = 4;
/** Write a little-endian 64-bit integer. */
public void writeRawLittleEndian64(final long value) throws IOException {
writeRawByte((int)(value ) & 0xFF);
writeRawByte((int)(value >> 8) & 0xFF);
writeRawByte((int)(value >> 16) & 0xFF);
writeRawByte((int)(value >> 24) & 0xFF);
writeRawByte((int)(value >> 32) & 0xFF);
writeRawByte((int)(value >> 40) & 0xFF);
writeRawByte((int)(value >> 48) & 0xFF);
writeRawByte((int)(value >> 56) & 0xFF);
}
public static final int LITTLE_ENDIAN_64_SIZE = 8;
/**
* Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers
* into values that can be efficiently encoded with varint. (Otherwise,
* negative values must be sign-extended to 64 bits to be varint encoded,
* thus always taking 10 bytes on the wire.)
*
* @param n A signed 32-bit integer.
* @return An unsigned 32-bit integer, stored in a signed int because
* Java has no explicit unsigned support.
*/
public static int encodeZigZag32(final int n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 31);
}
/**
* Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers
* into values that can be efficiently encoded with varint. (Otherwise,
* negative values must be sign-extended to 64 bits to be varint encoded,
* thus always taking 10 bytes on the wire.)
*
* @param n A signed 64-bit integer.
* @return An unsigned 64-bit integer, stored in a signed int because
* Java has no explicit unsigned support.
*/
public static long encodeZigZag64(final long n) {
// Note: the right-shift must be arithmetic
return (n << 1) ^ (n >> 63);
}
}