org.jgroups.util.HashedTimingWheel Maven / Gradle / Ivy
package org.jgroups.util;
import org.jgroups.Global;
import org.jgroups.annotations.Experimental;
import org.jgroups.annotations.Unsupported;
import org.jgroups.logging.Log;
import org.jgroups.logging.LogFactory;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.concurrent.*;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* Implementation of {@link TimeScheduler}. Uses a hashed timing wheel [1].
*
* [1] http://www.cse.wustl.edu/~cdgill/courses/cs6874/TimingWheels.ppt
*
* @author Bela Ban
*/
@Experimental @Unsupported
public class HashedTimingWheel implements TimeScheduler, Runnable {
private final ThreadPoolExecutor pool;
private Thread runner=null;
private final Lock lock=new ReentrantLock();
protected volatile boolean running;
protected static final Log log=LogFactory.getLog(HashedTimingWheel.class);
protected ThreadFactory timer_thread_factory=null;
protected int wheel_size=200; // number of ticks on the timing wheel
protected long tick_time=50L; // number of milliseconds a tick has
protected final long ROTATION_TIME;// time for 1 lap
protected final List[] wheel;
protected int wheel_position=0; // current position of the wheel, run() advances it by one (every TICK_TIME ms)
/**
* Create a scheduler that executes tasks in dynamically adjustable intervals
*/
@SuppressWarnings("unchecked")
public HashedTimingWheel() {
ROTATION_TIME=wheel_size * tick_time;
wheel=new List[wheel_size];
pool=new ThreadPoolExecutor(4, 10,
5000, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(5000),
Executors.defaultThreadFactory(), new ThreadPoolExecutor.CallerRunsPolicy());
init();
}
@SuppressWarnings("unchecked")
public HashedTimingWheel(ThreadFactory factory, int min_threads, int max_threads, long keep_alive_time, int max_queue_size,
int wheel_size, long tick_time) {
this.wheel_size=wheel_size;
this.tick_time=tick_time;
ROTATION_TIME=wheel_size * tick_time;
wheel=new List[this.wheel_size];
timer_thread_factory=factory;
pool=new ThreadPoolExecutor(min_threads, max_threads,keep_alive_time, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(max_queue_size),
factory, new ThreadPoolExecutor.CallerRunsPolicy());
init();
}
@SuppressWarnings("unchecked")
public HashedTimingWheel(int corePoolSize) {
ROTATION_TIME=wheel_size * tick_time;
wheel=(List[])new List[wheel_size];
pool=new ThreadPoolExecutor(corePoolSize, corePoolSize * 2,
5000, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(5000),
Executors.defaultThreadFactory(), new ThreadPoolExecutor.CallerRunsPolicy());
init();
}
public void setThreadFactory(ThreadFactory factory) {
pool.setThreadFactory(factory);
}
public int getMinThreads() {
return pool.getCorePoolSize();
}
public void setMinThreads(int size) {
pool.setCorePoolSize(size);
}
public int getMaxThreads() {
return pool.getMaximumPoolSize();
}
public void setMaxThreads(int size) {
pool.setMaximumPoolSize(size);
}
public long getKeepAliveTime() {
return pool.getKeepAliveTime(TimeUnit.MILLISECONDS);
}
public void setKeepAliveTime(long time) {
pool.setKeepAliveTime(time, TimeUnit.MILLISECONDS);
}
public int getCurrentThreads() {
return pool.getPoolSize();
}
public int getQueueSize() {
return pool.getQueue().size();
}
public String dumpTimerTasks() {
StringBuilder sb=new StringBuilder();
lock.lock();
try {
for(List list: wheel) {
if(!list.isEmpty()) {
sb.append(list).append("\n");
}
}
}
finally {
lock.unlock();
}
return sb.toString();
}
public void execute(Runnable task) {
schedule(task, 0, TimeUnit.MILLISECONDS);
}
public Future> schedule(Runnable work, long delay, TimeUnit unit) {
if(work == null)
throw new NullPointerException();
if (isShutdown() || !running)
return null;
MyTask retval=null;
long time=TimeUnit.MILLISECONDS.convert(delay, unit); // execution time
lock.lock();
try {
int num_ticks=(int)Math.max(1, ((time % ROTATION_TIME) / tick_time));
int position=(wheel_position + num_ticks) % wheel_size;
int rounds=(int)(time / ROTATION_TIME);
List list=wheel[position];
retval=new MyTask(work, rounds);
list.add(retval);
}
finally {
lock.unlock();
}
return retval;
}
public Future> scheduleWithFixedDelay(Runnable task, long initial_delay, long delay, TimeUnit unit) {
if(task == null)
throw new NullPointerException();
if (isShutdown() || !running)
return null;
RecurringTask wrapper=new FixedIntervalTask(task, delay);
wrapper.doSchedule(initial_delay);
return wrapper;
}
public Future> scheduleAtFixedRate(Runnable task, long initial_delay, long delay, TimeUnit unit) {
if(task == null)
throw new NullPointerException();
if (isShutdown() || !running)
return null;
RecurringTask wrapper=new FixedRateTask(task, delay);
wrapper.doSchedule(initial_delay);
return wrapper;
}
/**
* Schedule a task for execution at varying intervals. After execution, the task will get rescheduled after
* {@link org.jgroups.util.HashedTimingWheel.RecurringTask#nextInterval()} milliseconds. The task is never done until nextInterval()
* return a value <= 0 or the task is cancelled.
* @param task the task to execute
* Task is rescheduled relative to the last time it actually started execution
* false:
Task is scheduled relative to its last execution schedule. This has the effect
* that the time between two consecutive executions of the task remains the same.
* Note that relative is always true; we always schedule the next execution relative to the last *actual*
*/
public Future> scheduleWithDynamicInterval(Task task) {
if(task == null)
throw new NullPointerException();
if (isShutdown() || !running)
return null;
RecurringTask task_wrapper=new DynamicIntervalTask(task);
task_wrapper.doSchedule(); // calls schedule() in ScheduledThreadPoolExecutor
return task_wrapper;
}
/**
* Returns the number of tasks currently in the timer
* @return The number of tasks currently in the timer
*/
public int size() {
int retval=0;
lock.lock();
try {
for(List list: wheel)
retval+=list.size();
return retval;
}
finally {
lock.unlock();
}
}
public String toString() {
return getClass().getSimpleName();
}
/**
* Stops the timer, cancelling all tasks
*
* @throws InterruptedException if interrupted while waiting for thread to return
*/
public void stop() {
stopRunner();
List remaining_tasks=pool.shutdownNow();
for(Runnable task: remaining_tasks) {
if(task instanceof Future) {
Future future=(Future)task;
future.cancel(true);
}
}
pool.getQueue().clear();
try {
pool.awaitTermination(Global.THREADPOOL_SHUTDOWN_WAIT_TIME, TimeUnit.MILLISECONDS);
}
catch(InterruptedException e) {
}
}
public boolean isShutdown() {
return pool.isShutdown();
}
public void run() {
final long base_time=System.currentTimeMillis();
long next_time, sleep_time;
long cnt=0;
while(running) {
try {
_run();
next_time=base_time + (++cnt * tick_time);
sleep_time=Math.max(0, next_time - System.currentTimeMillis());
Util.sleep(sleep_time);
}
catch(Throwable t) {
log.error(Util.getMessage("FailedExecutingTasksS"), t);
}
}
}
protected void _run() {
lock.lock();
try {
wheel_position=(wheel_position +1) % wheel_size;
List list=wheel[wheel_position];
if(list.isEmpty())
return;
for(Iterator it=list.iterator(); it.hasNext();) {
MyTask tmp=it.next();
if(tmp.getAndDecrementRound() <= 0) {
try {
pool.execute(tmp);
}
catch(Throwable t) {
log.error(Util.getMessage("FailureSubmittingTaskToThreadPool"), t);
}
it.remove();
}
}
}
finally {
lock.unlock();
}
}
protected void init() {
for(int i=0; i < wheel.length; i++)
wheel[i]=new LinkedList<>();
startRunner();
}
protected void startRunner() {
running=true;
runner=timer_thread_factory != null? timer_thread_factory.newThread(this, "Timer runner") : new Thread(this, "Timer runner");
runner.start();
}
protected void stopRunner() {
lock.lock();
try {
running=false;
for(List list: wheel) {
if(!list.isEmpty()) {
for(MyTask task: list)
task.cancel(true);
list.clear();
}
}
}
finally {
lock.unlock();
}
}
/**
* Simple task wrapper, always executed by at most 1 thread.
*/
protected static class MyTask implements Future, Runnable {
protected final Runnable task;
protected volatile boolean cancelled=false;
protected volatile boolean done=false;
protected MyTask next;
protected int round;
public MyTask(Runnable task, int round) {
this.task=task;
this.round=round;
}
public int getRound() {
return round;
}
public int getAndDecrementRound() {
return round--;
}
public void setRound(int round) {
this.round=round;
}
public boolean cancel(boolean mayInterruptIfRunning) {
boolean retval=!isDone();
cancelled=true;
return retval;
}
public boolean isCancelled() {
return cancelled;
}
public boolean isDone() {
return done || cancelled;
}
public Object get() throws InterruptedException, ExecutionException {
return null;
}
public Object get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
return null;
}
public void run() {
if(isDone())
return;
try {
task.run();
}
catch(Throwable t) {
log.error(Util.getMessage("FailedExecutingTask") + task, t);
}
finally {
done=true;
}
}
public String toString() {
return task.toString();
}
}
/**
* Task which executes multiple times. An instance of this class wraps the real task and intercepts run(): when
* called, it forwards the call to task.run() and then schedules another execution (until cancelled). The
* {@link #nextInterval()} method determines the time to wait until the next execution.
* @param
*/
private abstract class RecurringTask implements Runnable, Future {
protected final Runnable task;
protected volatile Future> future; // cannot be null !
protected volatile boolean cancelled=false;
public RecurringTask(Runnable task) {
this.task=task;
}
/**
* The time to wait until the next execution
* @return Number of milliseconds to wait until the next execution is scheduled
*/
protected abstract long nextInterval();
protected boolean rescheduleOnZeroDelay() {return false;}
public void doSchedule() {
long next_interval=nextInterval();
if(next_interval <= 0 && !rescheduleOnZeroDelay()) {
if(log.isTraceEnabled())
log.trace("task will not get rescheduled as interval is " + next_interval);
return;
}
future=schedule(this, next_interval, TimeUnit.MILLISECONDS);
if(cancelled)
future.cancel(true);
}
public void doSchedule(long next_interval) {
future=schedule(this, next_interval, TimeUnit.MILLISECONDS);
if(cancelled)
future.cancel(true);
}
public void run() {
if(cancelled) {
if(future != null)
future.cancel(true);
return;
}
try {
task.run();
}
catch(Throwable t) {
log.error(Util.getMessage("FailedRunningTask") + task, t);
}
if(!cancelled)
doSchedule();
}
public boolean cancel(boolean mayInterruptIfRunning) {
boolean retval=!isDone();
cancelled=true;
if(future != null)
future.cancel(mayInterruptIfRunning);
return retval;
}
public boolean isCancelled() {
return cancelled;
}
public boolean isDone() {
return cancelled || (future == null || future.isDone());
}
public V get() throws InterruptedException, ExecutionException {
return null;
}
public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
return null;
}
public String toString() {
StringBuilder sb=new StringBuilder();
sb.append(getClass().getSimpleName() + ": task=" + task + ", cancelled=" + isCancelled());
return sb.toString();
}
}
private class FixedIntervalTask extends RecurringTask {
final long interval;
public FixedIntervalTask(Runnable task, long interval) {
super(task);
this.interval=interval;
}
protected long nextInterval() {
return interval;
}
}
private class FixedRateTask extends RecurringTask {
final long interval;
final long first_execution;
int num_executions=0;
public FixedRateTask(Runnable task, long interval) {
super(task);
this.interval=interval;
this.first_execution=System.currentTimeMillis();
}
protected long nextInterval() {
long target_time=first_execution + (interval * ++num_executions);
return target_time - System.currentTimeMillis();
}
protected boolean rescheduleOnZeroDelay() {return true;}
}
private class DynamicIntervalTask extends RecurringTask {
public DynamicIntervalTask(Task task) {
super(task);
}
protected long nextInterval() {
if(task instanceof Task)
return ((Task)task).nextInterval();
return 0;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy