org.j3d.util.HashSet Maven / Gradle / Ivy
/*****************************************************************************
* J3D.org Copyright (c) 2000
* Java Source
*
* This source is licensed under the GNU LGPL v2.1
* Please read http://www.gnu.org/copyleft/lgpl.html for more information
*
* This software comes with the standard NO WARRANTY disclaimer for any
* purpose. Use it at your own risk. If there's a problem you get to fix it.
*
****************************************************************************/
package org.j3d.util;
// External imports
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
// Local imports
// None
/**
* A custom HashSet implementation.
*
*
* This implementation is designed for realtime work and in particular with
* the goal of absolute minimum garbage generation. The standard implementation
* in java.util generates excessive amounts of garbage and is unsuitable for
* the task.
*
*
* The implementation does not have a backing class and the internals are based
* on the hashing code in IntHashMap. The method signature is almost the same as
* java.util.HashSet, except we leave out garbage generating methods like iterator().
*
* @author Rob Nielsen
* @version $Revision: 1.6 $
*/
public class HashSet
{
/** The hash table data.*/
private Entry[] table;
/** The total number of entries in the hash table. */
private int count;
/**
* The table is rehashed when its size exceeds this threshold. (The
* value of this field is (int)(capacity * loadFactor).)
*/
private int threshold;
/** The load factor for the hashtable. */
private float loadFactor;
/** Cache of the entry instances to prevent excessive object creation */
private ArrayList> entryCache;
/**
* Innerclass that acts as a datastructure to create a new entry in the
* table.
*/
private static class Entry
{
int hash;
T value;
Entry next;
/**
* Create a new default entry with nothing set.
*/
protected Entry()
{
}
/**
* Create a new entry with the given values.
*
* @param hash The code used to hash the object with
* @param value The value for this key
* @param next A reference to the next entry in the table
*/
protected Entry(int hash, T value, Entry next)
{
this.hash = hash;
this.value = value;
this.next = next;
}
/**
* Convenience method to set the entry with the given values.
*
* @param hash The code used to hash the object with
* @param value The value for this key
* @param next A reference to the next entry in the table
*/
protected void set(int hash, T value, Entry next)
{
this.hash = hash;
this.value = value;
this.next = next;
}
}
/**
* Constructs a new, empty set; the backing HashMap instance has
* default initial capacity (16) and load factor (0.75).
*/
public HashSet()
{
this(20, 0.75f);
}
/**
* Constructs a new, empty set; the backing HashMap instance has
* the specified initial capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hash map.
* @param loadFactor the load factor of the hash map.
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
public HashSet(int initialCapacity, float loadFactor)
{
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0)
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity == 0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
entryCache = new ArrayList<>(initialCapacity);
}
/**
* Constructs a new, empty set; the backing HashMap instance has
* the specified initial capacity and default load factor, which is
* 0.75.
*
* @param initialCapacity the initial capacity of the hash table.
* @throws IllegalArgumentException if the initial capacity is less
* than zero.
*/
public HashSet(int initialCapacity)
{
this(initialCapacity, 0.75f);
}
/**
* Returns the number of elements in this set (its cardinality).
*
* @return the number of elements in this set
*/
public int size()
{
return count;
}
/**
* Check to see if this set contains elements.
*
* @return true if this set contains no elements.
*/
public boolean isEmpty()
{
return count==0;
}
/**
* Returns true if this set contains the specified element.
*
* @param o element whose presence in this set is to be tested.
* @return true if this set contains the specified element.
*/
public boolean contains(T o)
{
if(o == null)
return false;
else
{
int hash=o.hashCode();
Entry[] tab = table;
int index = (hash & 0x7FFFFFFF) % tab.length;
for(Entry e = tab[index]; e != null; e = e.next)
{
if(e.hash == hash && (o == e.value || o.equals(e.value)))
return true;
}
return false;
}
}
/**
* Retain everything that is in the given set, in this set. If this
* set contains something that the given set does not, then delete it.
*
* @param set The set to compare against
*/
public void retainAll(HashSet set)
{
if(set == null)
return;
for(int i = 0; i < table.length; i++)
{
Entry e = table[i];
while (e != null)
{
Entry next = e.next;
if(!set.contains(e.value))
remove(e.value);
e = next;
}
}
}
/**
* Retain everything that is in the given set, in this set, and move
* anything that is not, into the alternate set.
*
* @param set The set to compare against
* @param diff The set to place the non-equal values into
*/
public void retainAll(HashSet set, HashSet diff)
{
if(set == null)
return;
if(diff == null)
retainAll(set);
else
{
for(int i = 0; i < table.length; i++)
{
Entry e = table[i];
while (e != null)
{
Entry next = e.next;
if(!set.contains(e.value))
{
diff.add(e.value);
remove(e.value);
}
e = next;
}
}
}
}
/**
* Adds the specified element to this set if it is not already
* present.
*
* @param o element to be added to this set.
* @return true if the set did not already contain the specified
* element.
*/
public boolean add(T o)
{
// Makes sure the key is not already in the hashtable.
if(o == null)
return false;
int hash = o.hashCode();
Entry[] tab = table;
int index = (hash & 0x7FFFFFFF) % tab.length;
for(Entry e = tab[index]; e != null; e = e.next)
{
if(e.hash == hash && (o == e.value || o.equals(e.value)))
return false;
}
if (count >= threshold)
{
// Rehash the table if the threshold is exceeded
rehash();
tab=table;
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
Entry e = getNewEntry();
e.set(hash, o, tab[index]);
tab[index] = e;
count++;
return true;
}
/**
* Removes the specified element from this set if it is present.
*
* @param o object to be removed from this set, if present.
* @return true if the set contained the specified element.
*/
public boolean remove(T o)
{
if(o == null)
return false;
Entry[] tab = table;
int hash = o.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index], prev = null ; e != null ; prev = e, e = e.next)
{
if(e.hash == hash && (o==e.value||o.equals(e.value)))
{
if(prev != null)
prev.next = e.next;
else
tab[index] = e.next;
count--;
e.value = null;
releaseEntry(e);
return true;
}
}
return false;
}
/**
* Removes all of the elements from this set.
*/
public void clear()
{
if(count == 0)
return;
Entry[] tab = table;
for(int index = tab.length; --index >= 0; )
{
Entry e = tab[index];
if(e == null)
continue;
while(e.next != null)
{
e.value = null;
releaseEntry(e);
Entry n = e.next;
e.next = null;
e = n;
}
e.value = null;
releaseEntry(e);
tab[index] = null;
}
count = 0;
}
/**
* Adds all of the elements in the specified collection to this set.
* The behavior of this operation is undefined if the specified collection
* is modified while the operation is in progress.
*
* This implementation iterates over the specified collection, and adds
* each object returned by the iterator to this collection, in turn.
*
* @param c collection whose elements are to be added to this collection.
* @return true if this collection changed as a result of the
* call.
* @throws UnsupportedOperationException if this collection does not
* support the addAll method.
* @throws NullPointerException if the specified collection is null.
*/
public boolean addAll(Collection c)
{
boolean modified = false;
Iterator e = c.iterator();
while (e.hasNext())
{
if(add(e.next()))
modified = true;
}
return modified;
}
/**
* Adds all of the elements in the specified hash set to this set.
* The behavior of this operation is undefined if the specified set is
* modified while the operation is in progress.
*
* @param hs The set whose elements are to be added to this set
* @return true if this collection changed as a result of the call
* @throws UnsupportedOperationException if this collection does not
* support the addAll method
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(HashSet hs)
{
boolean modified = false;
Entry[] table = hs.table;
for(int i = 0; i < table.length; i++)
{
Entry e = table[i];
while(e != null)
{
if(add(e.value))
modified = true;
e = e.next;
}
}
return modified;
}
/**
* Removes from this set all of its elements that are contained in
* the specified collection.
*
* This implementation iterates over this collection, checking each
* element returned by the iterator in turn to see if it's contained
* in the specified collection. If it's so contained, it's removed from
* this collection with the iterator's remove method.
*
* @param c elements to be removed from this set.
* @return true if this collection changed as a result of the call.
* @throws UnsupportedOperationException if the removeAll method
* is not supported by this collection.
* @throws NullPointerException if the specified collection is null.
*
* @see #remove(Object)
* @see #contains(Object)
*/
public boolean removeAll(Collection c)
{
if(c.size() == 0)
return false;
boolean modified = false;
Iterator e = c.iterator();
while(e.hasNext())
{
T obj = e.next();
if(remove(obj))
modified = true;
}
return modified;
}
/**
* Removes from this collection all of its elements that are contained in
* the specified hash set.
*
* This implementation iterates over this collection, checking each
* element returned by the iterator in turn to see if it's contained
* in the specified collection. If it's so contained, it's removed from
* this collection with the iterator's remove method.
*
* @param hs elements to be removed from this set.
* @return true if this set changed as a result of the call.
* @throws UnsupportedOperationException if the removeAll method
* is not supported by this collection.
* @throws NullPointerException if the specified collection is null.
*/
public boolean removeAll(HashSet hs)
{
boolean modified = false;
Entry[] table = hs.table;
for(int i=0;i e = table[i];
while(e != null)
{
if(remove(e.value))
modified = true;
e = e.next;
}
}
return modified;
}
/**
* Returns an array containing all of the elements in this collection. If
* the collection makes any guarantees as to what order its elements are
* returned by its iterator, this method must return the elements in the
* same order. The returned array will be "safe" in that no references to
* it are maintained by the collection. (In other words, this method must
* allocate a new array even if the collection is backed by an Array).
* The caller is thus free to modify the returned array.
*
* This implementation allocates the array to be returned, and iterates
* over the elements in the collection, storing each object reference in
* the next consecutive element of the array, starting with element 0.
*
* @return an array containing all of the elements in this collection.
*/
public Object[] toArray()
{
Object[] ret_val = new Object[count];
int cnt = 0;
for(int i = 0; i < table.length; i++)
{
Entry e = table[i];
while (e != null)
{
ret_val[cnt++]=e.value;
e = e.next;
}
}
return ret_val;
}
/**
* Returns an array containing all of the elements in this collection;
* the runtime type of the returned array is that of the specified array.
* If the collection fits in the specified array, it is returned therein.
* Otherwise, a new array is allocated with the runtime type of the
* specified array and the size of this collection.
*
* If the collection fits in the specified array with room to spare (i.e.,
* the array has more elements than the collection), the element in the
* array immediately following the end of the collection is set to
* null. This is useful in determining the length of the
* collection only if the caller knows that the collection does
* not contain any null elements.)
*
* If this collection makes any guarantees as to what order its elements
* are returned by its iterator, this method must return the elements in
* the same order.
*
* This implementation checks if the array is large enough to contain the
* collection; if not, it allocates a new array of the correct size and
* type (using reflection). Then, it iterates over the collection,
* storing each object reference in the next consecutive element of the
* array, starting with element 0. If the array is larger than the
* collection, a null is stored in the first location after the
* end of the collection.
*
* @param array the array into which the elements of the set are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing the elements of the collection.
* @throws NullPointerException if the specified array is null.
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in this
* collection.
*/
public T[] toArray(T array[])
{
int size = count;
if(array.length < size)
{
Class cls = array.getClass();
array = (T[])Array.newInstance(cls.getComponentType(),
size);
}
int cnt = 0;
for(int i = 0; i < table.length; i++)
{
Entry e = table[i];
while (e != null)
{
array[cnt++] = e.value;
e = e.next;
}
}
return array;
}
/**
* Compares the specified object with this set for equality. Returns
* true if the given object is also a set, the two sets have
* the same size, and every member of the given set is contained in
* this set.
*
* This implementation first checks if the specified object is this
* set; if so it returns true. Then, it checks if the
* specified object is a set whose size is identical to the size of
* this set; if not, it it returns false. If so, it returns
* containsAll((Collection) o).
*
* @param o Object to be compared for equality with this set.
* @return true if the specified object is equal to this set.
*/
@Override
public boolean equals(Object o)
{
if(o == this)
return true;
if(!(o instanceof HashSet))
return false;
HashSet hs = (HashSet)o;
if(hs.size() != size())
return false;
boolean ret_val = true;
for(int i=0;i e = table[i];
while (e != null)
{
if (!hs.contains(e.value))
{
ret_val = false;
break;
}
e = e.next;
}
}
return ret_val;
}
/**
* Returns the hash code value for this set. The hash code of a set is
* defined to be the sum of the hash codes of the elements in the set.
* This ensures that s1.equals(s2) implies that
* s1.hashCode()==s2.hashCode() for any two sets s1
* and s2, as required by the general contract of
* Object.hashCode.
*
* This implementation enumerates over the set, calling the
* hashCode method on each element in the collection, and
* adding up the results.
*
* @return the hash code value for this set.
*/
@Override
public int hashCode()
{
int h = 0;
for(int i=0;i
e = table[i];
while(e != null)
{
h += e.value.hashCode();
e = e.next;
}
}
return h;
}
/**
* Returns a string representation of this set. The string
* representation consists of a list of the collection's elements in the
* order they are returned by its iterator, enclosed in square brackets
* ("[]"). Adjacent elements are separated by the characters
* ", " (comma and space). Elements are converted to strings as
* by String.valueOf(Object).
*
* This implementation creates an empty string buffer, appends a left
* square bracket, and iterates over the collection appending the string
* representation of each element in turn. After appending each element
* except the last, the string ", " is appended. Finally a right
* bracket is appended. A string is obtained from the string buffer, and
* returned.
*
* @return a string representation of this collection.
*/
@Override
public String toString()
{
StringBuilder buf = new StringBuilder();
buf.append("[");
int cnt = 0;
for(int i = 0; i < table.length; i++)
{
Entry e = table[i];
while (e != null)
{
buf.append(e.value);
if(++cnt < count)
buf.append(", ");
e=e.next;
}
}
buf.append("]");
return buf.toString();
}
/**
* Increases the capacity of and internally reorganizes this
* hashtable, in order to accommodate and access its entries more
* efficiently. This method is called automatically when the
* number of keys in the hashtable exceeds this hashtable's capacity
* and load factor.
*/
private void rehash()
{
int oldCapacity = table.length;
Entry[] oldMap = table;
int newCapacity = oldCapacity * 2 + 1;
Entry[] newMap = new Entry[newCapacity];
threshold = (int)(newCapacity * loadFactor);
table = newMap;
for (int i = oldCapacity ; i-- > 0 ;)
{
for (Entry old = oldMap[i] ; old != null ; )
{
Entry e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = newMap[index];
newMap[index] = e;
}
}
}
/**
* Grab a new entry. Check the cache first to see if one is available. If
* not, create a new instance.
*
* @return An instance of the Entry
*/
private Entry getNewEntry()
{
Entry ret_val;
int size = entryCache.size();
if(size == 0)
ret_val = new Entry<>();
else
ret_val = entryCache.remove(size - 1);
return ret_val;
}
/**
* Release an entry back into the cache.
*
* @param e The entry to put into the cache
*/
private void releaseEntry(Entry e)
{
entryCache.add(e);
}
}