All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jaitools.media.jai.classifiedstats.ClassifiedStats Maven / Gradle / Ivy

Go to download

Calculates summary statistics, on top of classification rasters, for values in a data image

There is a newer version: 1.6.0
Show newest version
/* 
 *  Copyright (c) 2009-2010, Daniele Romagnoli. All rights reserved. 
 *   
 *  Redistribution and use in source and binary forms, with or without modification, 
 *  are permitted provided that the following conditions are met: 
 *   
 *  - Redistributions of source code must retain the above copyright notice, this  
 *    list of conditions and the following disclaimer. 
 *   
 *  - Redistributions in binary form must reproduce the above copyright notice, this 
 *    list of conditions and the following disclaimer in the documentation and/or 
 *    other materials provided with the distribution.   
 *   
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 
 *  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
 *  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
 *  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR 
 *  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
 *  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
 *  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
 *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */   

package org.jaitools.media.jai.classifiedstats;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.apache.commons.collections.keyvalue.MultiKey;
import org.jaitools.CollectionFactory;
import org.jaitools.numeric.Range;
import org.jaitools.numeric.Statistic;
import org.jaitools.numeric.StreamingSampleStats;


/**
 * Holds the results of the ClassifiedStats operator.
 * An instance of this class is stored as a property of the destination
 * image.
 * 

* * @see Result * @see ClassifiedStatsDescriptor * * @author Daniele Romagnoli, GeoSolutions S.A.S. * @since 1.2 */ public class ClassifiedStats { /** * List of Map of results. * - Elements of the list represent results by pivots. (no pivot means list made of a single element). * Each element of the list is a map of grouped results (>) * * see {@link ClassifiedStatsDescriptor} for more info about the concept of Pivot classifier. */ private List>> results; /** * Constructor. Package-private; called by ClassifiedStatsOpImage. */ ClassifiedStats() { Map> map = new HashMap>(); results = new ArrayList>>(); results.add(map); } /** * Copy constructor. Used by the chaining methods such as {@linkplain #band(int)}. * * @param src source object * @param band selected image band or {@code null} for all bands * @param pivot selected pivot index or {@code null} for using the first element * @param stat selected statistic or {@code null} for all statistics * @param ranges selected ranges or {@code null} for all ranges */ private ClassifiedStats(ClassifiedStats src, Integer band, Integer pivot, Statistic stat, List> ranges) { this(); Map> group = null; // Results are firstly grouped by pivot index // When classifying without pivot we use the first element of the list (at index 0) int pivotIndex = pivot == null ? 0 : pivot; if (pivotIndex < results.size()){ // Get the results group for the specified pivot index group = results.get(pivotIndex); if (group == null){ // In case we haven't a group yet, for that pivot, add it group = new HashMap>(); results.add(pivotIndex, group); } } else { // The pivot index is greater than the current results list size. // add a new group group = new HashMap>(); results.add(group); } // Get the keySet related to that pivot Set ks = src.results.get(pivotIndex).keySet(); // iterate over the keys Iterator it = ks.iterator(); while (it.hasNext()){ MultiKey mk = it.next(); // iterate over the results for each key List rs = src.results.get(pivotIndex).get(mk); List rsCopy = CollectionFactory.list(); for (Result r: rs){ if ((band == null || r.getImageBand() == band) && (stat == null || r.getStatistic() == stat)) { if (ranges == null || ranges.isEmpty()) { rsCopy.add(r); } else { if (r.getRanges().containsAll(ranges)) { rsCopy.add(r); } else { for (Range range : ranges) { if (r.getRanges().contains(range)) { rsCopy.add(r); } } } } } } group.put(mk, rsCopy); } } /** * Store the results for the given band, pivotIndex, classificationKey, ranges from the provided stats * * Package-private method used by {@code ClassifiedStatsOpImage}. * * @param band selected image band * @param pivotIndex selected pivot index * @param classificationKey the keys referring to the results to be set * @param stats input streamingSampleStats to be queried to populate results * @param ranges selected ranges */ void setResults(final int band, final int pivotIndex, final MultiKey classificationKey, final StreamingSampleStats stats, final List> ranges) { //First preliminary check on an already populated group of results for that pivot Map> group = null; if (pivotIndex < results.size()){ group = results.get(pivotIndex); if (group == null){ group = new HashMap>(); results.add(pivotIndex, group); } } else { group = new HashMap>(); results.add(group); } List rs = group.get(classificationKey); if (rs == null) { rs = CollectionFactory.list(); } //Populate the results list by scanning for statistics. for (Statistic s : stats.getStatistics()) { Result r = new Result(band, s, ranges, stats.getStatisticValue(s), stats.getNumOffered(s), stats.getNumAccepted(s), stats.getNumNaN(s), stats.getNumNoData(s), classificationKey); rs.add(r); } group.put(classificationKey, rs); } /** * Store the results for the given band, pivotIndex, classificationKey, ranges from the provided stats * * Package-private method used by {@code ClassifiedStatsOpImage}. * * @param band selected image band * @param pivotIndex selected pivot index * @param classificationKey the keys referring to the results to be set * @param stats input streamingSampleStats to be queried to populate results */ void setResults(final int band, final int pivotIndex, final MultiKey classifierKey, final StreamingSampleStats stats) { setResults(band, pivotIndex, classifierKey, stats, null); } /** * Get the subset of results for the given band. * * See the example of chaining this method in the class docs. * * @param b band index * * @return a new {@code ClassifiedStats} object containing results for the band * (data are shared with the source object rather than copied) */ public ClassifiedStats band(int b) { return new ClassifiedStats(this, b, 0, null, null); } /** * Get the subset of results for the given group. * * See the example of chaining this method in the class docs. * * @param g group (pivot) index * * @return a new {@code ClassifiedStats} object containing results for the group * (data are shared with the source object rather than copied) */ public ClassifiedStats group(int g) { return new ClassifiedStats(this, null, g, null, null); } /** * Get the subset of results for the given {@code Statistic}. * * See the example of chaining this method in the class docs. * * @param s the statistic * * @return a new {@code ClassifiedStats} object containing results for the statistic * (data are shared with the source object rather than copied) */ public ClassifiedStats statistic(Statistic s) { return new ClassifiedStats(this, null, null, s, null); } /** * Get the subset of results for the given {@code Ranges}. * * @param ranges the Ranges * * @return a new {@code ClassifiedStats} object containing results for the ranges * (data are shared with the source object rather than copied) */ public ClassifiedStats ranges(List> ranges) { return new ClassifiedStats(this, null, null, null, ranges); } /** * Returns the {@code Result} objects as a List>> * The keys are multiKey setup on top of the classifier pixel values. For each of them, * a List of {@code Result}s is provided. In case of classified stats against local ranges, * the list will contain the Result for each range. * The outer list allows to group results by pivot. In case no pivot classifiers * have been specified, the list will be a singleton and user should always get element 0. * * @return the results * @see Result */ public List>> results() { return Collections.unmodifiableList(results); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy