
org.jamesii.mlrules.parser.nodes.NormNode Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mlrules Show documentation
Show all versions of mlrules Show documentation
The main project for the external domain-specific modeling
language ML-Rules, which is used to model hierarchical biochemical
reaction networks with nested and attributed species
/*
* Copyright 2015 University of Rostock
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jamesii.mlrules.parser.nodes;
import org.jamesii.core.math.parsetree.INode;
import org.jamesii.core.math.parsetree.Node;
import org.jamesii.core.math.parsetree.ValueNode;
import org.jamesii.core.math.parsetree.variables.IEnvironment;
import org.jamesii.core.math.random.distributions.NormalDistribution;
import org.jamesii.core.math.random.generators.IRandom;
import org.jamesii.mlrules.model.Model;
import org.jamesii.mlrules.util.MLEnvironment;
/**
* Use the RNG of the model to sample a value of a Normal distribution with the given mean and variance.
*
* @author Tobias Helms
*
*/
public class NormNode extends Node {
private static final long serialVersionUID = 1L;
public static String MEAN = "§mean";
public static String VAR = "§var";
public static String NORM = "§norm";
@SuppressWarnings("unchecked")
@Override
public N calc(IEnvironment> cEnv) {
if (cEnv instanceof MLEnvironment) {
MLEnvironment env = (MLEnvironment) cEnv;
Object m = env.getValue(MEAN);
Object v = env.getValue(VAR);
if (m instanceof Number
&& v instanceof Number) {
NormalDistribution dist = (NormalDistribution) env.getValue(NORM);
if (dist == null) {
IRandom rng = (IRandom) env.getValue(Model.RNG);
dist = new NormalDistribution(rng);
env.setGlobalValue(NORM, dist);
}
dist.setMean(((Number) m).doubleValue());
dist.setDeviation(((Number) v).doubleValue());
return (N) new ValueNode(dist.getRandomNumber());
}
}
throw new IllegalArgumentException(
String.format("Could not compute a normal distributed number."));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy