![JAR search and dependency download from the Maven repository](/logo.png)
org.javimmutable.collections.tree.BranchNode Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of javimmutable-collections Show documentation
Show all versions of javimmutable-collections Show documentation
Library providing immutable/persistent collection classes for
Java. While collections are immutable they provide methods for
adding and removing values by creating new modified copies of
themselves. Each copy shares almost all of its structure with
other copies to minimize memory consumption.
///###////////////////////////////////////////////////////////////////////////
//
// Burton Computer Corporation
// http://www.burton-computer.com
//
// Copyright (c) 2018, Burton Computer Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// Neither the name of the Burton Computer Corporation nor the names
// of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package org.javimmutable.collections.tree;
import org.javimmutable.collections.Cursor;
import org.javimmutable.collections.Func1;
import org.javimmutable.collections.Holder;
import org.javimmutable.collections.Holders;
import org.javimmutable.collections.JImmutableMap;
import org.javimmutable.collections.SplitableIterator;
import org.javimmutable.collections.Tuple2;
import org.javimmutable.collections.common.ArrayHelper;
import org.javimmutable.collections.cursors.LazyMultiCursor;
import org.javimmutable.collections.indexed.IndexedArray;
import org.javimmutable.collections.iterators.LazyMultiIterator;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import javax.annotation.concurrent.Immutable;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Objects;
@Immutable
public class BranchNode
implements Node,
ArrayHelper.Allocator>
{
private final Node[] children;
private final K baseKey;
private final int childCount;
public BranchNode(@Nonnull Node child1,
@Nonnull Node child2)
{
children = allocate(2);
children[0] = child1;
children[1] = child2;
baseKey = child1.baseKey();
childCount = 2;
}
private BranchNode(@Nonnull Node[] children)
{
this.children = children;
this.baseKey = children[0].baseKey();
this.childCount = children.length;
}
@Nullable
@Override
public K baseKey()
{
return baseKey;
}
@Override
public int childCount()
{
return childCount;
}
@Override
public int valueCount()
{
int answer = 0;
for (Node child : children) {
answer += child.valueCount();
}
return answer;
}
@Override
public V getValueOr(@Nonnull Comparator comparator,
@Nonnull K key,
V defaultValue)
{
final Node[] children = this.children;
final int index = findChildIndex(comparator, key, children, -1);
return (index >= 0) ? children[index].getValueOr(comparator, key, defaultValue) : defaultValue;
}
@Nonnull
@Override
public Holder find(@Nonnull Comparator comparator,
@Nonnull K key)
{
final Node[] children = this.children;
final int index = findChildIndex(comparator, key, children, -1);
return (index >= 0) ? children[index].find(comparator, key) : Holders.of();
}
@Nonnull
@Override
public Holder> findEntry(@Nonnull Comparator comparator,
@Nonnull K key)
{
final Node[] children = this.children;
final int index = findChildIndex(comparator, key, children, -1);
return (index >= 0) ? children[index].findEntry(comparator, key) : Holders.of();
}
@Nonnull
@Override
public UpdateResult assign(@Nonnull Comparator comparator,
@Nonnull K key,
V value)
{
final Node[] children = this.children;
final int index = findChildIndex(comparator, key, children, 0);
final UpdateResult childResult = children[index].assign(comparator, key, value);
return resultForAssign(children, index, childResult);
}
@Nonnull
@Override
public UpdateResult update(@Nonnull Comparator comparator,
@Nonnull K key,
@Nonnull Func1, V> generator)
{
final Node[] children = this.children;
final int index = findChildIndex(comparator, key, children, 0);
final UpdateResult childResult = children[index].update(comparator, key, generator);
return resultForAssign(children, index, childResult);
}
@Nonnull
@Override
public Node delete(@Nonnull Comparator comparator,
@Nonnull K key)
{
final Node[] children = this.children;
final int index = findChildIndex(comparator, key, children, -1);
if (index < 0) {
return this;
}
final Node child = children[index];
final Node newChild = child.delete(comparator, key);
if (newChild == child) {
return this;
}
final int thisChildCount = this.childCount;
final int newChildCount = newChild.childCount();
if (newChildCount >= MIN_CHILDREN) {
return new BranchNode<>(ArrayHelper.assign(children, index, newChild));
} else if (newChildCount == 0) {
if (thisChildCount == 1) {
return EmptyNode.of();
} else {
return new BranchNode<>(ArrayHelper.delete(this, children, index));
}
} else if (thisChildCount == 1) {
// special case for the root
return new BranchNode<>(ArrayHelper.assign(children, index, newChild));
} else {
Node mergeChild;
Node nextChild;
int mergeIndex;
if (index == (thisChildCount - 1)) {
// can't merge at the end of the array
mergeIndex = index - 1;
mergeChild = children[mergeIndex];
nextChild = newChild;
} else {
mergeIndex = index;
mergeChild = newChild;
nextChild = children[index + 1];
}
if ((mergeChild.childCount() + nextChild.childCount()) <= MAX_CHILDREN) {
final Node newMergeChild = mergeChild.mergeChildren(nextChild);
return new BranchNode<>(ArrayHelper.assignDelete(this, children, mergeIndex, newMergeChild));
} else {
final Tuple2, Node> distributed = mergeChild.distributeChildren(nextChild);
return new BranchNode<>(ArrayHelper.assignTwo(children, mergeIndex, distributed.getFirst(), distributed.getSecond()));
}
}
}
@Nonnull
@Override
public Node mergeChildren(@Nonnull Node sibling)
{
final BranchNode branch = (BranchNode)sibling;
return new BranchNode<>(ArrayHelper.concat(this, children, branch.children));
}
@Nonnull
@Override
public Tuple2, Node> distributeChildren(@Nonnull Node sibling)
{
final BranchNode branch = (BranchNode)sibling;
return Tuple2.of(new BranchNode<>(ArrayHelper.subArray(this, children, branch.children, 0, MIN_CHILDREN)),
new BranchNode<>(ArrayHelper.subArray(this, children, branch.children, MIN_CHILDREN, childCount + branch.childCount)));
}
@Nonnull
@Override
public Node compress()
{
return children.length == 1 ? children[0].compress() : this;
}
@Override
public int depth()
{
return 1 + children[0].depth();
}
@Nonnull
@Override
public Cursor> cursor()
{
return LazyMultiCursor.cursor(IndexedArray.retained(children));
}
@Nonnull
@Override
public SplitableIterator> iterator()
{
return LazyMultiIterator.iterator(IndexedArray.retained(children));
}
@Override
public void checkInvariants(@Nonnull Comparator comparator)
{
if (childCount != children.length) {
throw new IllegalStateException();
}
if (childCount > MAX_CHILDREN) {
throw new IllegalStateException();
}
final int depth = children[0].depth();
for (int i = 0; i < childCount; ++i) {
final Node child = children[i];
if (child.depth() != depth) {
throw new IllegalStateException();
}
if (i > 0 && comparator.compare(children[i - 1].baseKey(), children[i].baseKey()) >= 0) {
throw new IllegalStateException();
}
child.checkInvariants(comparator);
}
}
@Nonnull
@Override
@SuppressWarnings("unchecked")
public Node[] allocate(int size)
{
return new Node[size];
}
@Override
public boolean equals(Object o)
{
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
BranchNode, ?> that = (BranchNode, ?>)o;
return childCount == that.childCount &&
Arrays.equals(children, that.children) &&
Objects.equals(baseKey, that.baseKey);
}
@Override
public int hashCode()
{
return Objects.hash(children, baseKey, childCount);
}
@Nonnull
private UpdateResult resultForAssign(Node[] children,
int index,
UpdateResult childResult)
{
switch (childResult.type) {
case UNCHANGED:
return childResult;
case INPLACE: {
final Node[] newChildren = ArrayHelper.assign(children, index, childResult.newNode);
return UpdateResult.createInPlace(new BranchNode<>(newChildren), childResult.sizeDelta);
}
case SPLIT: {
final Node[] newChildren = ArrayHelper.assignInsert(this, children, index, childResult.newNode, childResult.extraNode);
final int newChildCount = newChildren.length;
if (newChildCount <= MAX_CHILDREN) {
return UpdateResult.createInPlace(new BranchNode<>(newChildren), childResult.sizeDelta);
} else {
final Node newChild1 = new BranchNode<>(ArrayHelper.subArray(this, newChildren, 0, MIN_CHILDREN));
final Node newChild2 = new BranchNode<>(ArrayHelper.subArray(this, newChildren, MIN_CHILDREN, newChildCount));
return UpdateResult.createSplit(newChild1, newChild2, childResult.sizeDelta);
}
}
default:
throw new IllegalStateException("unknown UpdateResult.Type value");
}
}
static int findChildIndex(@Nonnull Comparator comparator,
@Nonnull K key,
@Nonnull Node[] children,
int beforeFirstChildIndex)
{
int first = 0;
int last = children.length - 1;
while (first <= last) {
final int middle = (first + last) >>> 1;
final K value = children[middle].baseKey();
final int diff = comparator.compare(key, value);
if (diff < 0) {
last = middle - 1;
} else if (diff > 0) {
first = middle + 1;
} else {
return middle;
}
}
return first > 0 ? first - 1 : beforeFirstChildIndex;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy