org.jbasics.math.strategies.GammaLanczosAlgorithmStrategy Maven / Gradle / Ivy
/*
* Copyright (c) 2009-2015
* IT-Consulting Stephan Schloepke (http://www.schloepke.de/)
* klemm software consulting Mirko Klemm (http://www.klemm-scs.com/)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package org.jbasics.math.strategies;
import org.jbasics.checker.ContractCheck;
import org.jbasics.math.AlgorithmStrategy;
import org.jbasics.math.BigDecimalMathLibrary;
import java.math.BigDecimal;
import java.math.MathContext;
public class GammaLanczosAlgorithmStrategy implements AlgorithmStrategy {
private final LanczosCoefficients coefficients;
public GammaLanczosAlgorithmStrategy(final LanczosCoefficients coefficients) {
this.coefficients = ContractCheck.mustNotBeNull(coefficients, "coefficients");
}
@Override
public BigDecimal calculate(final MathContext mc, final BigDecimal guess, final BigDecimal... xn) {
BigDecimal x = xn[0];
if (BigDecimalMathLibrary.CONSTANT_HALF.compareTo(x) >= 0) {
return BigDecimalMathLibrary.PI.valueToPrecision(mc)
.divide(BigDecimalMathLibrary.sin(BigDecimalMathLibrary.piMultiple(x).valueToPrecision(mc)).valueToPrecision(mc), mc)
.multiply(calculate(mc, null, BigDecimal.ONE.subtract(x)), mc);
} else {
x = x.subtract(BigDecimal.ONE);
final BigDecimal tmp = this.coefficients.calculate(mc, x);
x = x.add(BigDecimalMathLibrary.CONSTANT_HALF);
final BigDecimal t = x.add(this.coefficients.getG());
final BigDecimal expTxA = BigDecimalMathLibrary.exp(t.negate()).valueToPrecision(mc).multiply(tmp);
return BigDecimalMathLibrary.SQRT_PI2.valueToPrecision(mc).multiply(
BigDecimalMathLibrary.pow(t, x).valueToPrecision(mc).multiply(expTxA), mc);
}
}
}
/*
* if(x < 0.5) return Math.PI / (Math.sin(Math.PI * x)*la_gamma(1-x));
* x -= 1;
* double a = p[0];
* double t = x+g+0.5;
* for(int i = 1; i < p.length; i++){
* this.a += p[this.i]/(x+this.i);
* }
* return Math.sqrt(2*Math.PI)*Math.pow(t, x+0.5)*Math.exp(-t)*a;
* ------------------
* /*
* if (x <= -1) return Double.NaN;
* double a = L15[0];
* for (int i = 1; i < 15; ++i) {
* a += L15[i]/(x+i);
* }
* double tmp = x + (607/128. + .5);
* return (LN_SQRT2PI + Math.log(a)) + (x+.5)*Math.log(tmp) - tmp;
*/
© 2015 - 2025 Weber Informatics LLC | Privacy Policy