All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jbasics.math.BigRational Maven / Gradle / Ivy

Go to download

jBasics is a collection of useful utility classes for Java. This includes helper for XML, mathematic functions, restful web services helper, pattern oriented programming interfaces and more. Currently Java7 and up is supported. Version 1.0 will required at leaset Java8.

There is a newer version: 2.0.0p3
Show newest version
/*
 * Copyright (c) 2009-2015
 * 	IT-Consulting Stephan Schloepke (http://www.schloepke.de/)
 * 	klemm software consulting Mirko Klemm (http://www.klemm-scs.com/)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package org.jbasics.math;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;

/**
 * An Immutable representation of ratio based on two {@link BigInteger} for numerator and denominator. 

{@link * BigRational} is the extension to the {@link BigDecimal} and {@link BigInteger} classes found in Java. Since Java does * not have any support for real ratios this class is supposed to fill this gap.

* * @author Stephan Schloepke */ public final class BigRational extends Number implements Comparable { /** * Constant {@link BigRational} for the value of zero (0/1) */ public static final BigRational ZERO = new BigRational(BigInteger.valueOf(0L), BigInteger.valueOf(1L)); /** * Constant {@link BigRational} for the value of one (1/1) */ public static final BigRational ONE = new BigRational(BigInteger.valueOf(1L), BigInteger.valueOf(1L)); /** * The serial version UID required as a derive from number */ private static final long serialVersionUID = -1773220741262593011L; private final BigInteger numerator; private final BigInteger denomintar; private transient BigInteger cachedGCD; /** * Create a {@link BigRational} with the given numerator and denominator. * * @param numerator The numerator * @param denominator The denominator */ public BigRational(final long numerator, final long denominator) { this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator)); } /** * Create a {@link BigRational} with the given numerator and denominator (numerator/denominator).

The create * {@link BigRational} is not reduced but the sign is correct in the manner that if both numbers are negative that * non becomes negative and if the denominator is negative than the numerator becomes negative and the denominator * positive. The result is always a Ratio in the form [-]numerator/denominator.

Since a * division by zero is undefined the denominator must not be zero and neither parts can be null or an {@link * IllegalArgumentException} is raised.

* * @param numerator The numerator (must not be null) * @param denominator The denominator (must not be null or zero). */ public BigRational(final BigInteger numerator, final BigInteger denominator) { if (numerator == null || denominator == null) { throw new IllegalArgumentException("Null parameter: numerator and denominator must not be null"); } if (denominator.signum() == 0) { throw new ArithmeticException("Denominator cannot be zero => Division by zero"); } if (denominator.signum() < 0) { this.numerator = numerator.negate(); this.denomintar = denominator.negate(); } else { this.numerator = numerator; this.denomintar = denominator; } } /** * Returns a {@link BigRational} representation for the given long value. * * @param value The long value * * @return The {@link BigRational} representation. */ public static BigRational valueOf(final long value) { return new BigRational(BigInteger.valueOf(value), BigInteger.ONE); } /** * Parses the given String and returns a {@link BigRational} representation.

The value is parsed according to * the pattern "^-?[0-9]+(/-?[0-9]+)?$". If String does not apply to the pattern an {@link * IllegalArgumentException} is thrown.

* * @param value The String to parse (must not be null or zero length) * * @return The {@link BigRational} representation. * * @throws IllegalArgumentException Thrown if the String does not comply to the pattern (see above). */ public static BigRational valueOf(final String value) { if (value == null || value.length() == 0) { throw new IllegalArgumentException("Zero length (or null) BigRatio"); } String[] parts = value.split("/"); switch (parts.length) { case 1: if (parts[0].indexOf('.') >= 0) { return BigRational.valueOf(new BigDecimal(parts[0])); } else { return new BigRational(new BigInteger(parts[0]), BigInteger.ONE); } case 2: return new BigRational(new BigInteger(parts[0]), new BigInteger(parts[1])); default: throw new IllegalArgumentException("Illegal BigRational value " + value); } } /** * Returns a {@link BigRational} representation for the given {@link BigDecimal} value. * * @param value The {@link BigDecimal} value (must not be null). * * @return The {@link BigRational} representation. * * @throws IllegalArgumentException If the given value is null. */ public static BigRational valueOf(final BigDecimal value) { if (value == null) { throw new IllegalArgumentException("Null parameter: value"); } if (BigDecimal.ZERO.compareTo(value) == 0) { return BigRational.ZERO; } else if (BigDecimal.ONE.compareTo(value) == 0) { return BigRational.ONE; } BigInteger nominator = value.unscaledValue(); BigInteger denominator = BigInteger.TEN.pow(value.scale()); BigInteger gcd = nominator.gcd(denominator); return new BigRational(nominator.divide(gcd), denominator.divide(gcd)); } /** * Returns a {@link BigRational} representation for the given {@link Number} value. * * @param value The {@link Number} value (if null BigRational.ZERO will be returned). * * @return The {@link BigRational} representation. * * @throws IllegalArgumentException If the given value is null. */ public static BigRational valueOf(final Number value) { if (value == null) { return BigRational.ZERO; } else if (value instanceof BigRational) { return (BigRational) value; } else if (value instanceof BigInteger) { return new BigRational((BigInteger) value, BigInteger.ONE); } else if (value instanceof BigDecimal) { return BigRational.valueOf((BigDecimal) value); } else if (value instanceof Integer || value instanceof Long || value instanceof Short || value instanceof Byte) { return new BigRational(value.longValue(), 1L); } else { return BigRational.valueOf(value.doubleValue()); } } /** * Returns a {@link BigRational} representation for the given double value. * * @param value The double value * * @return The {@link BigRational} representation. */ public static BigRational valueOf(final double value) { return BigRational.valueOf(BigDecimal.valueOf(value)); } /** * Returns the numerator part of this {@link BigRational}. * * @return The numerator part. */ public BigInteger numerator() { return this.numerator; } /** * Returns the denominator part of this {@link BigRational}. * * @return The denominator part. */ public BigInteger denominator() { return this.denomintar; } /** * Reduces this {@link BigRational} to a more simple fraction.

Returns a new {@link BigRational} with the * numerator and denominator divided by the greatest common divider. In case that the GCD is one the {@link * BigRational} cannot be reduced and this is returned instead of a new {@link BigRational}.

* * @return The {@link BigRational} with the numerator and denominator reduced by the greatest common divider. */ public BigRational reduce() { BigInteger gcd = gcd(); if (BigInteger.ONE.equals(gcd)) { return this; } return new BigRational(this.numerator.divide(gcd), this.denomintar.divide(gcd)); } /** * Calculates the greatest common divider of the numerator and denominator. * * @return The greatest common divider. */ public BigInteger gcd() { if (this.cachedGCD == null) { this.cachedGCD = this.numerator.gcd(this.denomintar); } return this.cachedGCD; } /** * Extend this {@link BigRational} by a given factor. *

* This method is a convenient wrapper for {@link BigRational#extend(BigInteger)} and calls it with {@link * BigInteger#valueOf(long)}. *

* * @param factor The factor to multiply numerator and denominator with (must not be null or zero). * * @return The extended form of this {@link BigRational} or this {@link BigRational} if the factor is one. * * @throws ArithmeticException if the given factor is zero. * @see BigRational#extend(BigInteger) */ public BigRational extend(final long factor) { return extend(BigInteger.valueOf(factor)); } /** * Extend this {@link BigRational} by a given factor. *

* The result is a {@link BigRational} with its numerator and denominator multiplied by the factor. If the given * factor is one than this is returned (no extension when multiplying numerator and denominator with one). Howere * the factor of zero is not allowed and yields an {@link ArithmeticException} since it would lead to a division by * zero (x*0/y*0 = 0/0). *

* * @param factor The factor to multiply numerator and denominator with (must not be null or zero). * * @return The extended form of this {@link BigRational} or this {@link BigRational} if the factor is one. * * @throws IllegalArgumentException If the given factor is null. * @throws ArithmeticException if the given factor is zero. */ public BigRational extend(final BigInteger factor) { if (factor == null) { throw new IllegalArgumentException("Null parameter: factor"); } if (BigInteger.ZERO.equals(factor)) { throw new ArithmeticException("Extension with zero would lead to a division by zero"); } if (BigInteger.ONE.equals(factor)) { return this; } return new BigRational(BigInteger.ONE.equals(this.numerator) ? factor : this.numerator.multiply(factor), BigInteger.ONE.equals(this.denomintar) ? factor : this.denomintar.multiply(factor)); } /** * Extends this BigRational to a new BigRational where the denominator is equal to the given multiple.

In order * to extend this {@link BigRational} so that the denominator is equal to the multiple it is required that the * multiple really is a multiple of the denominator. In case that the given multiple is not a multiple of the * denominator an {@link ArithmeticException} is raised. The multiple must be greater than one since {@link * BigRational} guarantees that the denominator is never negative and a negative multiple would lead to a negative * denominator and change the value rather than extending the representation (1/2 is 2/4 so still the same value if * extended to a multiple of 4. However 1/2 to 2/-4 would be a different value and therefore not an extension. If * such a case is required than multiply the with -2/2 or use negate().extendToMultiple(4) instead).

* * @param multiple The multiple to extend this {@link BigRational} to. * * @return A BigRational with the denominator equal to the multiple. * * @throws IllegalArgumentException If the multiple is less than or equal to one. * @throws ArithmeticException If the multiple is not a m multiple of the denominator. */ public BigRational extendToMultiple(final BigInteger multiple) { if (multiple == null) { throw new IllegalArgumentException("Null parameter: multiple"); } if (BigInteger.ONE.compareTo(multiple) >= 0) { throw new IllegalArgumentException("multiple must be greater than one"); } BigInteger[] temp = multiple.divideAndRemainder(this.denomintar); if (temp[1] != null && BigInteger.ZERO.compareTo(temp[1]) != 0) { throw new ArithmeticException("Not a multiple of the denominator " + multiple + "/" + this.denomintar + " = " + temp[0] + " rest " + temp[1]); } return extend(temp[0]); } /** * Returns the reciprocal value of this {@link BigRational} (x/y => y/x). * * @return The reciprocal {@link BigRational} of this {@link BigRational}. */ public BigRational reciprocal() { return new BigRational(this.denomintar, this.numerator); } /** * Returns the negation of this {@link BigRational} (x/y => -x/y). * * @return The negated {@link BigRational}. */ public BigRational negate() { return new BigRational(this.numerator.negate(), this.denomintar); } /** * Returns the absolute value of this BigRational ( |-x/y| => x/y ). If this {@link BigRational} is already positive * this is returned. * * @return The absolute {@link BigRational}. */ public BigRational abs() { if (this.numerator.signum() > 0) { return this; } return new BigRational(this.numerator.abs(), this.denomintar); } public BigRational add(final BigInteger x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator.add(x.multiply(this.denomintar)), this.denomintar); } public BigRational add(final BigDecimal x) { return add(BigRational.valueOf(x)); } public BigRational add(final BigRational x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } if (this.denomintar.equals(x.denomintar)) { return addNumerator(x.numerator); } BigInteger lcm = lcm(x); BigInteger thisFactor = lcm.divide(this.denomintar); BigInteger thatFactor = lcm.divide(x.denomintar); return new BigRational(this.numerator.multiply(thisFactor).add(x.numerator.multiply(thatFactor)), lcm); } /** * Adds a value to the numerator and returns a new BigRational with the value added. *

This is a useful method especially for programming certain algorithms more effectively. Consider the constant * E which can be represented by the Taylor series E = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + ... + 1/n!. * Now the algorithm could do an extend and addNumerator in the following way:

*
	 * BigRational[] results = new BigRational[100];
	 * results[0] = BigRational.ONE; // 1/0! is 1/1
	 * for (int i = 1; i < results.length; i++) {
	 * 	results[i] = results[i - 1].extend(i).addNumerator(BigInteger.ONE);
	 * }
	 * 
*

as you see it would be faster due to the fact that the denominator extends by the iteration step each time. * So the current numerator must advance in the same way. Those the effect is that we have two multiplications and * one addition. If we would always add 1/(n+1)! there is the multiplication to extend the faculty to the next step * and two multiplications to bring the rational numbers to match the same denominator. The number would raise very * quickly as long as you do not reduce the fraction each step. If you reduce the fraction each step an additional * amount of calculating the GCD is added as overhead. The result still would be quite close to the algorithm * outlined above. With other words the algorithm above is quite a bit faster (even not linear to n because the * multiplication is quadric). However it only works if you do not reduce in each step so the number raises quite a * bit. In the typical exp function this does not matter a lot though since the reduction dosn't save much.

* * @param x The value to add to the numerator of this {@link BigRational} * * @return The new {@link BigRational} with its numerator advanced by x. */ public BigRational addNumerator(final BigInteger x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator.add(x), this.denomintar); } /** * Calculates the least common multiple of the denominator and the denominator of the given {@link BigRational}. * * @param x The {@link BigRational} to get the least common multiple of. * * @return The least common multiple of this {@link BigRational} and the given {@link BigRational}s denominator. */ public BigInteger lcm(final BigRational x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return this.denomintar.multiply(x.denomintar).abs().divide(this.denomintar.gcd(x.denomintar)); } public BigRational subtract(final BigInteger x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator.subtract(x.multiply(this.denomintar)), this.denomintar); } public BigRational subtract(final BigDecimal x) { return subtract(BigRational.valueOf(x)); } public BigRational subtract(final BigRational x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } if (this.denomintar.equals(x.denomintar)) { return subtractNumerator(x.numerator); } BigInteger lcm = lcm(x); BigInteger thisFactor = lcm.divide(this.denomintar); BigInteger thatFactor = lcm.divide(x.denomintar); return new BigRational(this.numerator.multiply(thisFactor).subtract(x.numerator.multiply(thatFactor)), lcm); } public BigRational subtractNumerator(final BigInteger x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator.subtract(x), this.denomintar); } public BigRational multiply(final BigInteger x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator.multiply(x), this.denomintar); } public BigRational multiply(final BigDecimal x) { return multiply(BigRational.valueOf(x)); } public BigRational multiply(final BigRational x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator.multiply(x.numerator), this.denomintar.multiply(x.denomintar)); } public BigRational divide(final BigInteger x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator, this.denomintar.multiply(x)); } public BigRational divide(final BigDecimal x) { return divide(BigRational.valueOf(x)); } public BigRational divide(final BigRational x) { if (x == null) { throw new IllegalArgumentException("Null parameter: x"); } return new BigRational(this.numerator.multiply(x.denomintar), this.denomintar.multiply(x.numerator)); } public BigRational pow(final int x) { if (x == 0 || this.numerator.signum() == 0) { return BigRational.ONE; } return new BigRational(this.numerator.pow(x), this.denomintar.pow(x)); } // --- Convert to other Big types public BigDecimal decimalValue() { return decimalValue(MathContext.UNLIMITED); } public BigDecimal decimalValue(final MathContext mc) { if (mc == null) { throw new IllegalArgumentException("Null parameter: mc"); } return new BigDecimal(this.numerator).divide(new BigDecimal(this.denomintar), mc); } /** * Returns an exact {@link BigInteger} value of this {@link BigRational} or throws an {@link ArithmeticException} if * the integer division has a remainder. * * @return The exact BigInteger value of this BigRatio. * * @throws ArithmeticException If the division has a remainder. */ public BigInteger toBigIntegerExact() { if (remainder().signum() != 0) { throw new ArithmeticException("Ratio has a remainder"); } return toBigInteger(); } public int signum() { return this.numerator.signum(); } /** * Returns the remainder of the division if the division would be executed. * * @return The remainder of the division from numerator and denominator (numerator mod denominator). */ public BigRational remainder() { return new BigRational(this.numerator.remainder(this.denomintar), this.denomintar); } public BigInteger toBigInteger() { return this.numerator.divide(this.denomintar); } // --- Number implementation @Override public int intValue() { return this.numerator.divide(this.denomintar).intValue(); } @Override public long longValue() { return this.numerator.divide(this.denomintar).longValue(); } @Override public float floatValue() { return new BigDecimal(this.numerator).divide(new BigDecimal(this.denomintar), MathContext.DECIMAL32) .floatValue(); } @Override public double doubleValue() { return new BigDecimal(this.numerator).divide(new BigDecimal(this.denomintar), MathContext.DECIMAL64) .doubleValue(); } // --- Standard java toString, hashCode and equals. @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + this.numerator.hashCode(); result = prime * result + this.denomintar.hashCode(); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } else if (obj == null || !(obj instanceof BigRational)) { return false; } BigRational other = (BigRational) obj; if (!this.denomintar.equals(other.denomintar)) { return false; } else if (!this.numerator.equals(other.numerator)) { return false; } return true; } @Override public String toString() { StringBuilder temp = new StringBuilder().append(this.numerator); if (!BigInteger.ONE.equals(this.denomintar)) { temp.append("/").append(this.denomintar); //$NON-NLS-1$ } return temp.toString(); } // --- Comparable interface public int compareTo(final BigRational that) { if (that == null) { throw new IllegalArgumentException("Null parameter: that"); } BigInteger lcm = this.denomintar.multiply(that.denomintar).abs().divide(this.denomintar.gcd(that.denomintar)); return this.numerator.multiply(lcm.divide(this.denomintar)).compareTo( that.numerator.multiply(lcm.divide(that.denomintar))); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy