All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jblas.Eigen Maven / Gradle / Ivy

There is a newer version: 1.2.5
Show newest version
// --- BEGIN LICENSE BLOCK ---
/* 
 * Copyright (c) 2009-13, Mikio L. Braun
 *               2011, Nicola Oury
 *               2013, Alexander Sehlström
 *
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 * 
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 * 
 *     * Neither the name of the Technische Universität Berlin nor the
 *       names of its contributors may be used to endorse or promote
 *       products derived from this software without specific prior
 *       written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
// --- END LICENSE BLOCK ---

package org.jblas;

import org.jblas.exceptions.NoEigenResultException;
import org.jblas.ranges.IntervalRange;
import org.jblas.ranges.Range;

/**
 * 

Eigenvalue and Eigenvector related functions.

*

*

Methods exist for working with symmetric matrices or general eigenvalues. * The symmetric versions are usually much faster on symmetric matrices.

*/ public class Eigen { private static final DoubleMatrix dummyDouble = new DoubleMatrix(1); /** * Compute the eigenvalues for a symmetric matrix. */ public static DoubleMatrix symmetricEigenvalues(DoubleMatrix A) { A.assertSquare(); DoubleMatrix eigenvalues = new DoubleMatrix(A.rows); int isuppz[] = new int[2 * A.rows]; SimpleBlas.syevr('N', 'A', 'U', A.dup(), 0, 0, 0, 0, 0, eigenvalues, dummyDouble, isuppz); return eigenvalues; } /** * Computes the eigenvalues and eigenvectors for a symmetric matrix. * * @return an array of DoubleMatrix objects containing the eigenvectors * stored as the columns of the first matrix, and the eigenvalues as * diagonal elements of the second matrix. */ public static DoubleMatrix[] symmetricEigenvectors(DoubleMatrix A) { A.assertSquare(); DoubleMatrix eigenvalues = new DoubleMatrix(A.rows); DoubleMatrix eigenvectors = A.dup(); int isuppz[] = new int[2 * A.rows]; SimpleBlas.syevr('V', 'A', 'U', A.dup(), 0, 0, 0, 0, 0, eigenvalues, eigenvectors, isuppz); return new DoubleMatrix[]{eigenvectors, DoubleMatrix.diag(eigenvalues)}; } /** * Computes the eigenvalues of a general matrix. */ public static ComplexDoubleMatrix eigenvalues(DoubleMatrix A) { A.assertSquare(); DoubleMatrix WR = new DoubleMatrix(A.rows); DoubleMatrix WI = WR.dup(); SimpleBlas.geev('N', 'N', A.dup(), WR, WI, dummyDouble, dummyDouble); return new ComplexDoubleMatrix(WR, WI); } /** * Computes the eigenvalues and eigenvectors of a general matrix. * * @return an array of ComplexDoubleMatrix objects containing the eigenvectors * stored as the columns of the first matrix, and the eigenvalues as the * diagonal elements of the second matrix. */ public static ComplexDoubleMatrix[] eigenvectors(DoubleMatrix A) { A.assertSquare(); // setting up result arrays DoubleMatrix WR = new DoubleMatrix(A.rows); DoubleMatrix WI = WR.dup(); DoubleMatrix VR = new DoubleMatrix(A.rows, A.rows); SimpleBlas.geev('N', 'V', A.dup(), WR, WI, dummyDouble, VR); // transferring the result ComplexDoubleMatrix E = new ComplexDoubleMatrix(WR, WI); ComplexDoubleMatrix V = new ComplexDoubleMatrix(A.rows, A.rows); //System.err.printf("VR = %s\n", VR.toString()); for (int i = 0; i < A.rows; i++) { if (E.get(i).isReal()) { V.putColumn(i, new ComplexDoubleMatrix(VR.getColumn(i))); } else { ComplexDoubleMatrix v = new ComplexDoubleMatrix(VR.getColumn(i), VR.getColumn(i + 1)); V.putColumn(i, v); V.putColumn(i + 1, v.conji()); i += 1; } } return new ComplexDoubleMatrix[]{V, ComplexDoubleMatrix.diag(E)}; } /** * Compute generalized eigenvalues of the problem A x = L B x. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @return a vector of eigenvalues L. */ public static DoubleMatrix symmetricGeneralizedEigenvalues(DoubleMatrix A, DoubleMatrix B) { A.assertSquare(); B.assertSquare(); DoubleMatrix W = new DoubleMatrix(A.rows); SimpleBlas.sygvd(1, 'N', 'U', A.dup(), B.dup(), W); return W; } /** * Solve a general problem A x = L B x. * * @param A symmetric matrix A * @param B symmetric matrix B * @return an array of matrices of length two. The first one is an array of the eigenvectors X * The second one is A vector containing the corresponding eigenvalues L. */ public static DoubleMatrix[] symmetricGeneralizedEigenvectors(DoubleMatrix A, DoubleMatrix B) { A.assertSquare(); B.assertSquare(); DoubleMatrix[] result = new DoubleMatrix[2]; DoubleMatrix dA = A.dup(); DoubleMatrix dB = B.dup(); DoubleMatrix W = new DoubleMatrix(dA.rows); SimpleBlas.sygvd(1, 'V', 'U', dA, dB, W); result[0] = dA; result[1] = W; return result; } /** * Computes selected eigenvalues of the real generalized symmetric-definite eigenproblem of the form A x = L B x * or, equivalently, (A - L B)x = 0. Here A and B are assumed to be symmetric and B is also positive definite. * The selection is based on the given range of values for the desired eigenvalues. *

* The range is half open: (vl,vu]. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param vl lower bound of the smallest eigenvalue to return * @param vu upper bound of the largest eigenvalue to return * @throws IllegalArgumentException if vl > vu * @throws NoEigenResultException if no eigevalues are found for the selected range: (vl,vu] * @return a vector of eigenvalues L */ public static DoubleMatrix symmetricGeneralizedEigenvalues(DoubleMatrix A, DoubleMatrix B, double vl, double vu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (vu <= vl) { throw new IllegalArgumentException("Bound exception: make sure vu > vl"); } double abstol = (double) 1e-9; // What is a good tolerance? int[] m = new int[1]; DoubleMatrix W = new DoubleMatrix(A.rows); DoubleMatrix Z = new DoubleMatrix(A.rows, A.rows); SimpleBlas.sygvx(1, 'N', 'V', 'U', A.dup(), B.dup(), vl, vu, 0, 0, abstol, m, W, Z); if (m[0] == 0) { throw new NoEigenResultException("No eigenvalues found for selected range"); } return W.get(new IntervalRange(0, m[0]), 0); } /** * Computes selected eigenvalues of the real generalized symmetric-definite eigenproblem of the form A x = L B x * or, equivalently, (A - L B)x = 0. Here A and B are assumed to be symmetric and B is also positive definite. * The selection is based on the given range of indices for the desired eigenvalues. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param il lower index (in ascending order) of the smallest eigenvalue to return (index is 0-based) * @param iu upper index (in ascending order) of the largest eigenvalue to return (index is 0-based) * @throws IllegalArgumentException if il > iu or il < 0 or iu > A.rows - 1 * @return a vector of eigenvalues L */ public static DoubleMatrix symmetricGeneralizedEigenvalues(DoubleMatrix A, DoubleMatrix B, int il, int iu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (iu < il) { throw new IllegalArgumentException("Index exception: make sure iu >= il"); } if (il < 0) { throw new IllegalArgumentException("Index exception: make sure il >= 0"); } if (iu > A.rows - 1) { throw new IllegalArgumentException("Index exception: make sure iu <= A.rows - 1"); } double abstol = (double) 1e-9; // What is a good tolerance? int[] m = new int[1]; DoubleMatrix W = new DoubleMatrix(A.rows); DoubleMatrix Z = new DoubleMatrix(A.rows, A.columns); SimpleBlas.sygvx(1, 'N', 'I', 'U', A.dup(), B.dup(), 0.0, 0.0, il + 1, iu + 1, abstol, m, W, Z); return W.get(new IntervalRange(0, m[0]), 0); } /** * Computes selected eigenvalues and their corresponding eigenvectors of the real generalized symmetric-definite * eigenproblem of the form A x = L B x or, equivalently, (A - L B)x = 0. Here A and B are assumed to be symmetric * and B is also positive definite. The selection is based on the given range of values for the desired eigenvalues. * * The range is half open: (vl,vu]. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param vl lower bound of the smallest eigenvalue to return * @param vu upper bound of the largest eigenvalue to return * @return an array of matrices of length two. The first one is an array of the eigenvectors x. * The second one is a vector containing the corresponding eigenvalues L. * @throws IllegalArgumentException if vl > vu * @throws NoEigenResultException if no eigevalues are found for the selected range: (vl,vu] */ public static DoubleMatrix[] symmetricGeneralizedEigenvectors(DoubleMatrix A, DoubleMatrix B, double vl, double vu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (vu <= vl) { throw new IllegalArgumentException("Bound exception: make sure vu > vl"); } double abstol = (double) 1e-9; // What is a good tolerance? int[] m = new int[1]; DoubleMatrix W = new DoubleMatrix(A.rows); DoubleMatrix Z = new DoubleMatrix(A.rows, A.columns); SimpleBlas.sygvx(1, 'V', 'V', 'U', A.dup(), B.dup(), vl, vu, 0, 0, abstol, m, W, Z); if (m[0] == 0) { throw new NoEigenResultException("No eigenvalues found for selected range"); } DoubleMatrix[] result = new DoubleMatrix[2]; Range r = new IntervalRange(0, m[0]); result[0] = Z.get(new IntervalRange(0, A.rows), r); result[1] = W.get(r, 0); return result; } /** * Computes selected eigenvalues and their corresponding * eigenvectors of the real generalized symmetric-definite * eigenproblem of the form A x = L B x or, equivalently, * (A - L B)x = 0. Here A and B are assumed to be symmetric * and B is also positive definite. The selection is based * on the given range of values for the desired eigenvalues. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param il lower index (in ascending order) of the smallest eigenvalue to return (index is 0-based) * @param iu upper index (in ascending order) of the largest eigenvalue to return (index is 0-based) * @throws IllegalArgumentException if il > iu or il < 0 * or iu > A.rows - 1 * @return an array of matrices of length two. The first one is an array of the eigenvectors x. * The second one is a vector containing the corresponding eigenvalues L. */ public static DoubleMatrix[] symmetricGeneralizedEigenvectors(DoubleMatrix A, DoubleMatrix B, int il, int iu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (iu < il) { throw new IllegalArgumentException("Index exception: make sure iu >= il"); } if (il < 0) { throw new IllegalArgumentException("Index exception: make sure il >= 0"); } if (iu > A.rows - 1) { throw new IllegalArgumentException("Index exception: make sure iu <= A.rows - 1"); } double abstol = (double) 1e-9; // What is a good tolerance? int[] m = new int[1]; DoubleMatrix W = new DoubleMatrix(A.rows); DoubleMatrix Z = new DoubleMatrix(A.rows, A.columns); SimpleBlas.sygvx(1, 'V', 'I', 'U', A.dup(), B.dup(), 0, 0, il + 1, iu + 1, abstol, m, W, Z); DoubleMatrix[] result = new DoubleMatrix[2]; Range r = new IntervalRange(0, m[0]); result[0] = Z.get(new IntervalRange(0, A.rows), r); result[1] = W.get(r, 0); return result; } //BEGIN // The code below has been automatically generated. // DO NOT EDIT! private static final FloatMatrix dummyFloat = new FloatMatrix(1); /** * Compute the eigenvalues for a symmetric matrix. */ public static FloatMatrix symmetricEigenvalues(FloatMatrix A) { A.assertSquare(); FloatMatrix eigenvalues = new FloatMatrix(A.rows); int isuppz[] = new int[2 * A.rows]; SimpleBlas.syevr('N', 'A', 'U', A.dup(), 0, 0, 0, 0, 0, eigenvalues, dummyFloat, isuppz); return eigenvalues; } /** * Computes the eigenvalues and eigenvectors for a symmetric matrix. * * @return an array of FloatMatrix objects containing the eigenvectors * stored as the columns of the first matrix, and the eigenvalues as * diagonal elements of the second matrix. */ public static FloatMatrix[] symmetricEigenvectors(FloatMatrix A) { A.assertSquare(); FloatMatrix eigenvalues = new FloatMatrix(A.rows); FloatMatrix eigenvectors = A.dup(); int isuppz[] = new int[2 * A.rows]; SimpleBlas.syevr('V', 'A', 'U', A.dup(), 0, 0, 0, 0, 0, eigenvalues, eigenvectors, isuppz); return new FloatMatrix[]{eigenvectors, FloatMatrix.diag(eigenvalues)}; } /** * Computes the eigenvalues of a general matrix. */ public static ComplexFloatMatrix eigenvalues(FloatMatrix A) { A.assertSquare(); FloatMatrix WR = new FloatMatrix(A.rows); FloatMatrix WI = WR.dup(); SimpleBlas.geev('N', 'N', A.dup(), WR, WI, dummyFloat, dummyFloat); return new ComplexFloatMatrix(WR, WI); } /** * Computes the eigenvalues and eigenvectors of a general matrix. * * @return an array of ComplexFloatMatrix objects containing the eigenvectors * stored as the columns of the first matrix, and the eigenvalues as the * diagonal elements of the second matrix. */ public static ComplexFloatMatrix[] eigenvectors(FloatMatrix A) { A.assertSquare(); // setting up result arrays FloatMatrix WR = new FloatMatrix(A.rows); FloatMatrix WI = WR.dup(); FloatMatrix VR = new FloatMatrix(A.rows, A.rows); SimpleBlas.geev('N', 'V', A.dup(), WR, WI, dummyFloat, VR); // transferring the result ComplexFloatMatrix E = new ComplexFloatMatrix(WR, WI); ComplexFloatMatrix V = new ComplexFloatMatrix(A.rows, A.rows); //System.err.printf("VR = %s\n", VR.toString()); for (int i = 0; i < A.rows; i++) { if (E.get(i).isReal()) { V.putColumn(i, new ComplexFloatMatrix(VR.getColumn(i))); } else { ComplexFloatMatrix v = new ComplexFloatMatrix(VR.getColumn(i), VR.getColumn(i + 1)); V.putColumn(i, v); V.putColumn(i + 1, v.conji()); i += 1; } } return new ComplexFloatMatrix[]{V, ComplexFloatMatrix.diag(E)}; } /** * Compute generalized eigenvalues of the problem A x = L B x. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @return a vector of eigenvalues L. */ public static FloatMatrix symmetricGeneralizedEigenvalues(FloatMatrix A, FloatMatrix B) { A.assertSquare(); B.assertSquare(); FloatMatrix W = new FloatMatrix(A.rows); SimpleBlas.sygvd(1, 'N', 'U', A.dup(), B.dup(), W); return W; } /** * Solve a general problem A x = L B x. * * @param A symmetric matrix A * @param B symmetric matrix B * @return an array of matrices of length two. The first one is an array of the eigenvectors X * The second one is A vector containing the corresponding eigenvalues L. */ public static FloatMatrix[] symmetricGeneralizedEigenvectors(FloatMatrix A, FloatMatrix B) { A.assertSquare(); B.assertSquare(); FloatMatrix[] result = new FloatMatrix[2]; FloatMatrix dA = A.dup(); FloatMatrix dB = B.dup(); FloatMatrix W = new FloatMatrix(dA.rows); SimpleBlas.sygvd(1, 'V', 'U', dA, dB, W); result[0] = dA; result[1] = W; return result; } /** * Computes selected eigenvalues of the real generalized symmetric-definite eigenproblem of the form A x = L B x * or, equivalently, (A - L B)x = 0. Here A and B are assumed to be symmetric and B is also positive definite. * The selection is based on the given range of values for the desired eigenvalues. *

* The range is half open: (vl,vu]. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param vl lower bound of the smallest eigenvalue to return * @param vu upper bound of the largest eigenvalue to return * @throws IllegalArgumentException if vl > vu * @throws NoEigenResultException if no eigevalues are found for the selected range: (vl,vu] * @return a vector of eigenvalues L */ public static FloatMatrix symmetricGeneralizedEigenvalues(FloatMatrix A, FloatMatrix B, float vl, float vu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (vu <= vl) { throw new IllegalArgumentException("Bound exception: make sure vu > vl"); } float abstol = (float) 1e-9; // What is a good tolerance? int[] m = new int[1]; FloatMatrix W = new FloatMatrix(A.rows); FloatMatrix Z = new FloatMatrix(A.rows, A.rows); SimpleBlas.sygvx(1, 'N', 'V', 'U', A.dup(), B.dup(), vl, vu, 0, 0, abstol, m, W, Z); if (m[0] == 0) { throw new NoEigenResultException("No eigenvalues found for selected range"); } return W.get(new IntervalRange(0, m[0]), 0); } /** * Computes selected eigenvalues of the real generalized symmetric-definite eigenproblem of the form A x = L B x * or, equivalently, (A - L B)x = 0. Here A and B are assumed to be symmetric and B is also positive definite. * The selection is based on the given range of indices for the desired eigenvalues. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param il lower index (in ascending order) of the smallest eigenvalue to return (index is 0-based) * @param iu upper index (in ascending order) of the largest eigenvalue to return (index is 0-based) * @throws IllegalArgumentException if il > iu or il < 0 or iu > A.rows - 1 * @return a vector of eigenvalues L */ public static FloatMatrix symmetricGeneralizedEigenvalues(FloatMatrix A, FloatMatrix B, int il, int iu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (iu < il) { throw new IllegalArgumentException("Index exception: make sure iu >= il"); } if (il < 0) { throw new IllegalArgumentException("Index exception: make sure il >= 0"); } if (iu > A.rows - 1) { throw new IllegalArgumentException("Index exception: make sure iu <= A.rows - 1"); } float abstol = (float) 1e-9; // What is a good tolerance? int[] m = new int[1]; FloatMatrix W = new FloatMatrix(A.rows); FloatMatrix Z = new FloatMatrix(A.rows, A.columns); SimpleBlas.sygvx(1, 'N', 'I', 'U', A.dup(), B.dup(), 0.0f, 0.0f, il + 1, iu + 1, abstol, m, W, Z); return W.get(new IntervalRange(0, m[0]), 0); } /** * Computes selected eigenvalues and their corresponding eigenvectors of the real generalized symmetric-definite * eigenproblem of the form A x = L B x or, equivalently, (A - L B)x = 0. Here A and B are assumed to be symmetric * and B is also positive definite. The selection is based on the given range of values for the desired eigenvalues. * * The range is half open: (vl,vu]. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param vl lower bound of the smallest eigenvalue to return * @param vu upper bound of the largest eigenvalue to return * @return an array of matrices of length two. The first one is an array of the eigenvectors x. * The second one is a vector containing the corresponding eigenvalues L. * @throws IllegalArgumentException if vl > vu * @throws NoEigenResultException if no eigevalues are found for the selected range: (vl,vu] */ public static FloatMatrix[] symmetricGeneralizedEigenvectors(FloatMatrix A, FloatMatrix B, float vl, float vu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (vu <= vl) { throw new IllegalArgumentException("Bound exception: make sure vu > vl"); } float abstol = (float) 1e-9; // What is a good tolerance? int[] m = new int[1]; FloatMatrix W = new FloatMatrix(A.rows); FloatMatrix Z = new FloatMatrix(A.rows, A.columns); SimpleBlas.sygvx(1, 'V', 'V', 'U', A.dup(), B.dup(), vl, vu, 0, 0, abstol, m, W, Z); if (m[0] == 0) { throw new NoEigenResultException("No eigenvalues found for selected range"); } FloatMatrix[] result = new FloatMatrix[2]; Range r = new IntervalRange(0, m[0]); result[0] = Z.get(new IntervalRange(0, A.rows), r); result[1] = W.get(r, 0); return result; } /** * Computes selected eigenvalues and their corresponding * eigenvectors of the real generalized symmetric-definite * eigenproblem of the form A x = L B x or, equivalently, * (A - L B)x = 0. Here A and B are assumed to be symmetric * and B is also positive definite. The selection is based * on the given range of values for the desired eigenvalues. * * @param A symmetric Matrix A. Only the upper triangle will be considered. * @param B symmetric Matrix B. Only the upper triangle will be considered. * @param il lower index (in ascending order) of the smallest eigenvalue to return (index is 0-based) * @param iu upper index (in ascending order) of the largest eigenvalue to return (index is 0-based) * @throws IllegalArgumentException if il > iu or il < 0 * or iu > A.rows - 1 * @return an array of matrices of length two. The first one is an array of the eigenvectors x. * The second one is a vector containing the corresponding eigenvalues L. */ public static FloatMatrix[] symmetricGeneralizedEigenvectors(FloatMatrix A, FloatMatrix B, int il, int iu) { A.assertSquare(); B.assertSquare(); A.assertSameSize(B); if (iu < il) { throw new IllegalArgumentException("Index exception: make sure iu >= il"); } if (il < 0) { throw new IllegalArgumentException("Index exception: make sure il >= 0"); } if (iu > A.rows - 1) { throw new IllegalArgumentException("Index exception: make sure iu <= A.rows - 1"); } float abstol = (float) 1e-9; // What is a good tolerance? int[] m = new int[1]; FloatMatrix W = new FloatMatrix(A.rows); FloatMatrix Z = new FloatMatrix(A.rows, A.columns); SimpleBlas.sygvx(1, 'V', 'I', 'U', A.dup(), B.dup(), 0, 0, il + 1, iu + 1, abstol, m, W, Z); FloatMatrix[] result = new FloatMatrix[2]; Range r = new IntervalRange(0, m[0]); result[0] = Z.get(new IntervalRange(0, A.rows), r); result[1] = W.get(r, 0); return result; } //END }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy