All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jboss.netty.handler.ssl.SslHandler Maven / Gradle / Ivy

Go to download

The Netty project is an effort to provide an asynchronous event-driven network application framework and tools for rapid development of maintainable high performance and high scalability protocol servers and clients. In other words, Netty is a NIO client server framework which enables quick and easy development of network applications such as protocol servers and clients. It greatly simplifies and streamlines network programming such as TCP and UDP socket server.

There is a newer version: 3.2.10.Final
Show newest version
/*
 * Copyright 2009 Red Hat, Inc.
 *
 * Red Hat licenses this file to you under the Apache License, version 2.0
 * (the "License"); you may not use this file except in compliance with the
 * License.  You may obtain a copy of the License at:
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package org.jboss.netty.handler.ssl;

import static org.jboss.netty.channel.Channels.*;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.ClosedChannelException;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.Executor;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.regex.Pattern;

import javax.net.ssl.SSLEngine;
import javax.net.ssl.SSLEngineResult;
import javax.net.ssl.SSLEngineResult.HandshakeStatus;
import javax.net.ssl.SSLEngineResult.Status;
import javax.net.ssl.SSLException;

import org.jboss.netty.buffer.ChannelBuffer;
import org.jboss.netty.buffer.ChannelBuffers;
import org.jboss.netty.channel.Channel;
import org.jboss.netty.channel.ChannelDownstreamHandler;
import org.jboss.netty.channel.ChannelEvent;
import org.jboss.netty.channel.ChannelFuture;
import org.jboss.netty.channel.ChannelFutureListener;
import org.jboss.netty.channel.ChannelHandlerContext;
import org.jboss.netty.channel.ChannelPipeline;
import org.jboss.netty.channel.ChannelStateEvent;
import org.jboss.netty.channel.Channels;
import org.jboss.netty.channel.DownstreamMessageEvent;
import org.jboss.netty.channel.ExceptionEvent;
import org.jboss.netty.channel.LifeCycleAwareChannelHandler;
import org.jboss.netty.channel.MessageEvent;
import org.jboss.netty.handler.codec.frame.FrameDecoder;
import org.jboss.netty.logging.InternalLogger;
import org.jboss.netty.logging.InternalLoggerFactory;
import org.jboss.netty.util.internal.LinkedTransferQueue;
import org.jboss.netty.util.internal.NonReentrantLock;

/**
 * Adds SSL
 * · TLS and StartTLS support to a {@link Channel}.  Please refer
 * to the "SecureChat" example in the distribution or the web
 * site for the detailed usage.
 *
 * 

Beginning the handshake

*

* You must make sure not to write a message while the * {@linkplain #handshake() handshake} is in progress unless you are * renegotiating. You will be notified by the {@link ChannelFuture} which is * returned by the {@link #handshake()} method when the handshake * process succeeds or fails. * *

Renegotiation

*

* If {@link #isEnableRenegotiation() enableRenegotiation} is {@code true} * (default) and the initial handshake has been done successfully, you can call * {@link #handshake()} to trigger the renegotiation. *

* If {@link #isEnableRenegotiation() enableRenegotiation} is {@code false}, * an attempt to trigger renegotiation will result in the connection closure. *

* Please note that TLS renegotiation had a security issue before. If your * runtime environment did not fix it, please make sure to disable TLS * renegotiation by calling {@link #setEnableRenegotiation(boolean)} with * {@code false}. For more information, please refer to the following documents: *

* *

Closing the session

*

* To close the SSL session, the {@link #close()} method should be * called to send the {@code close_notify} message to the remote peer. One * exception is when you close the {@link Channel} - {@link SslHandler} * intercepts the close request and send the {@code close_notify} message * before the channel closure automatically. Once the SSL session is closed, * it is not reusable, and consequently you should create a new * {@link SslHandler} with a new {@link SSLEngine} as explained in the * following section. * *

Restarting the session

*

* To restart the SSL session, you must remove the existing closed * {@link SslHandler} from the {@link ChannelPipeline}, insert a new * {@link SslHandler} with a new {@link SSLEngine} into the pipeline, * and start the handshake process as described in the first section. * *

Implementing StartTLS

*

* StartTLS is the * communication pattern that secures the wire in the middle of the plaintext * connection. Please note that it is different from SSL · TLS, that * secures the wire from the beginning of the connection. Typically, StartTLS * is composed of three steps: *

    *
  1. Client sends a StartTLS request to server.
  2. *
  3. Server sends a StartTLS response to client.
  4. *
  5. Client begins SSL handshake.
  6. *
* If you implement a server, you need to: *
    *
  1. create a new {@link SslHandler} instance with {@code startTls} flag set * to {@code true},
  2. *
  3. insert the {@link SslHandler} to the {@link ChannelPipeline}, and
  4. *
  5. write a StartTLS response.
  6. *
* Please note that you must insert {@link SslHandler} before sending * the StartTLS response. Otherwise the client can send begin SSL handshake * before {@link SslHandler} is inserted to the {@link ChannelPipeline}, causing * data corruption. *

* The client-side implementation is much simpler. *

    *
  1. Write a StartTLS request,
  2. *
  3. wait for the StartTLS response,
  4. *
  5. create a new {@link SslHandler} instance with {@code startTls} flag set * to {@code false},
  6. *
  7. insert the {@link SslHandler} to the {@link ChannelPipeline}, and
  8. *
  9. Initiate SSL handshake by calling {@link SslHandler#handshake()}.
  10. *
* * @author The Netty Project * @author Trustin Lee * * @version $Rev: 2369 $, $Date: 2010-10-19 13:05:28 +0900 (Tue, 19 Oct 2010) $ * * @apiviz.landmark * @apiviz.uses org.jboss.netty.handler.ssl.SslBufferPool */ public class SslHandler extends FrameDecoder implements ChannelDownstreamHandler, LifeCycleAwareChannelHandler { private static final InternalLogger logger = InternalLoggerFactory.getInstance(SslHandler.class); private static final ByteBuffer EMPTY_BUFFER = ByteBuffer.allocate(0); private static final Pattern IGNORABLE_ERROR_MESSAGE = Pattern.compile( "^.*(?:connection.*reset|connection.*closed|broken.*pipe).*$", Pattern.CASE_INSENSITIVE); private static SslBufferPool defaultBufferPool; /** * Returns the default {@link SslBufferPool} used when no pool is * specified in the constructor. */ public static synchronized SslBufferPool getDefaultBufferPool() { if (defaultBufferPool == null) { defaultBufferPool = new SslBufferPool(); } return defaultBufferPool; } private volatile ChannelHandlerContext ctx; private final SSLEngine engine; private final SslBufferPool bufferPool; private final Executor delegatedTaskExecutor; private final boolean startTls; private volatile boolean enableRenegotiation = true; final Object handshakeLock = new Object(); private boolean handshaking; private volatile boolean handshaken; private volatile ChannelFuture handshakeFuture; private final AtomicBoolean sentFirstMessage = new AtomicBoolean(); private final AtomicBoolean sentCloseNotify = new AtomicBoolean(); int ignoreClosedChannelException; final Object ignoreClosedChannelExceptionLock = new Object(); private final Queue pendingUnencryptedWrites = new LinkedList(); private final Queue pendingEncryptedWrites = new LinkedTransferQueue(); private final NonReentrantLock pendingEncryptedWritesLock = new NonReentrantLock(); /** * Creates a new instance. * * @param engine the {@link SSLEngine} this handler will use */ public SslHandler(SSLEngine engine) { this(engine, getDefaultBufferPool(), ImmediateExecutor.INSTANCE); } /** * Creates a new instance. * * @param engine the {@link SSLEngine} this handler will use * @param bufferPool the {@link SslBufferPool} where this handler will * acquire the buffers required by the {@link SSLEngine} */ public SslHandler(SSLEngine engine, SslBufferPool bufferPool) { this(engine, bufferPool, ImmediateExecutor.INSTANCE); } /** * Creates a new instance. * * @param engine the {@link SSLEngine} this handler will use * @param startTls {@code true} if the first write request shouldn't be * encrypted by the {@link SSLEngine} */ public SslHandler(SSLEngine engine, boolean startTls) { this(engine, getDefaultBufferPool(), startTls); } /** * Creates a new instance. * * @param engine the {@link SSLEngine} this handler will use * @param bufferPool the {@link SslBufferPool} where this handler will * acquire the buffers required by the {@link SSLEngine} * @param startTls {@code true} if the first write request shouldn't be * encrypted by the {@link SSLEngine} */ public SslHandler(SSLEngine engine, SslBufferPool bufferPool, boolean startTls) { this(engine, bufferPool, startTls, ImmediateExecutor.INSTANCE); } /** * Creates a new instance. * * @param engine * the {@link SSLEngine} this handler will use * @param delegatedTaskExecutor * the {@link Executor} which will execute the delegated task * that {@link SSLEngine#getDelegatedTask()} will return */ public SslHandler(SSLEngine engine, Executor delegatedTaskExecutor) { this(engine, getDefaultBufferPool(), delegatedTaskExecutor); } /** * Creates a new instance. * * @param engine * the {@link SSLEngine} this handler will use * @param bufferPool * the {@link SslBufferPool} where this handler will acquire * the buffers required by the {@link SSLEngine} * @param delegatedTaskExecutor * the {@link Executor} which will execute the delegated task * that {@link SSLEngine#getDelegatedTask()} will return */ public SslHandler(SSLEngine engine, SslBufferPool bufferPool, Executor delegatedTaskExecutor) { this(engine, bufferPool, false, delegatedTaskExecutor); } /** * Creates a new instance. * * @param engine * the {@link SSLEngine} this handler will use * @param startTls * {@code true} if the first write request shouldn't be encrypted * by the {@link SSLEngine} * @param delegatedTaskExecutor * the {@link Executor} which will execute the delegated task * that {@link SSLEngine#getDelegatedTask()} will return */ public SslHandler(SSLEngine engine, boolean startTls, Executor delegatedTaskExecutor) { this(engine, getDefaultBufferPool(), startTls, delegatedTaskExecutor); } /** * Creates a new instance. * * @param engine * the {@link SSLEngine} this handler will use * @param bufferPool * the {@link SslBufferPool} where this handler will acquire * the buffers required by the {@link SSLEngine} * @param startTls * {@code true} if the first write request shouldn't be encrypted * by the {@link SSLEngine} * @param delegatedTaskExecutor * the {@link Executor} which will execute the delegated task * that {@link SSLEngine#getDelegatedTask()} will return */ public SslHandler(SSLEngine engine, SslBufferPool bufferPool, boolean startTls, Executor delegatedTaskExecutor) { if (engine == null) { throw new NullPointerException("engine"); } if (bufferPool == null) { throw new NullPointerException("bufferPool"); } if (delegatedTaskExecutor == null) { throw new NullPointerException("delegatedTaskExecutor"); } this.engine = engine; this.bufferPool = bufferPool; this.delegatedTaskExecutor = delegatedTaskExecutor; this.startTls = startTls; } /** * Returns the {@link SSLEngine} which is used by this handler. */ public SSLEngine getEngine() { return engine; } /** * Starts an SSL / TLS handshake for the specified channel. * * @return a {@link ChannelFuture} which is notified when the handshake * succeeds or fails. */ public ChannelFuture handshake() { if (handshaken && !isEnableRenegotiation()) { throw new IllegalStateException("renegotiation disabled"); } ChannelHandlerContext ctx = this.ctx; Channel channel = ctx.getChannel(); ChannelFuture handshakeFuture; Exception exception = null; synchronized (handshakeLock) { if (handshaking) { return this.handshakeFuture; } else { handshaking = true; try { engine.beginHandshake(); runDelegatedTasks(); handshakeFuture = this.handshakeFuture = future(channel); } catch (Exception e) { handshakeFuture = this.handshakeFuture = failedFuture(channel, e); exception = e; } } } if (exception == null) { // Began handshake successfully. try { wrapNonAppData(ctx, channel); } catch (SSLException e) { fireExceptionCaught(ctx, e); handshakeFuture.setFailure(e); } } else { // Failed to initiate handshake. fireExceptionCaught(ctx, exception); } return handshakeFuture; } /** * @deprecated Use {@link #handshake()} instead. */ @Deprecated public ChannelFuture handshake(Channel channel) { return handshake(); } /** * Sends an SSL {@code close_notify} message to the specified channel and * destroys the underlying {@link SSLEngine}. */ public ChannelFuture close() { ChannelHandlerContext ctx = this.ctx; Channel channel = ctx.getChannel(); try { engine.closeOutbound(); return wrapNonAppData(ctx, channel); } catch (SSLException e) { fireExceptionCaught(ctx, e); return failedFuture(channel, e); } } /** * @deprecated Use {@link #close()} instead. */ @Deprecated public ChannelFuture close(Channel channel) { return close(); } /** * Returns {@code true} if and only if TLS renegotiation is enabled. */ public boolean isEnableRenegotiation() { return enableRenegotiation; } /** * Enables or disables TLS renegotiation. */ public void setEnableRenegotiation(boolean enableRenegotiation) { this.enableRenegotiation = enableRenegotiation; } public void handleDownstream( final ChannelHandlerContext context, final ChannelEvent evt) throws Exception { if (evt instanceof ChannelStateEvent) { ChannelStateEvent e = (ChannelStateEvent) evt; switch (e.getState()) { case OPEN: case CONNECTED: case BOUND: if (Boolean.FALSE.equals(e.getValue()) || e.getValue() == null) { closeOutboundAndChannel(context, e); return; } } } if (!(evt instanceof MessageEvent)) { context.sendDownstream(evt); return; } MessageEvent e = (MessageEvent) evt; if (!(e.getMessage() instanceof ChannelBuffer)) { context.sendDownstream(evt); return; } // Do not encrypt the first write request if this handler is // created with startTLS flag turned on. if (startTls && sentFirstMessage.compareAndSet(false, true)) { context.sendDownstream(evt); return; } // Otherwise, all messages are encrypted. ChannelBuffer msg = (ChannelBuffer) e.getMessage(); PendingWrite pendingWrite; if (msg.readable()) { pendingWrite = new PendingWrite(evt.getFuture(), msg.toByteBuffer(msg.readerIndex(), msg.readableBytes())); } else { pendingWrite = new PendingWrite(evt.getFuture(), null); } synchronized (pendingUnencryptedWrites) { boolean offered = pendingUnencryptedWrites.offer(pendingWrite); assert offered; } wrap(context, evt.getChannel()); } @Override public void channelDisconnected(ChannelHandlerContext ctx, ChannelStateEvent e) throws Exception { // Make sure the handshake future is notified when a connection has // been closed during handshake. synchronized (handshakeLock) { if (handshaking) { handshakeFuture.setFailure(new ClosedChannelException()); } } try { super.channelDisconnected(ctx, e); } finally { unwrap(ctx, e.getChannel(), ChannelBuffers.EMPTY_BUFFER, 0, 0); engine.closeOutbound(); if (!sentCloseNotify.get() && handshaken) { try { engine.closeInbound(); } catch (SSLException ex) { logger.debug("Failed to clean up SSLEngine.", ex); } } } } @Override public void exceptionCaught(ChannelHandlerContext ctx, ExceptionEvent e) throws Exception { Throwable cause = e.getCause(); if (cause instanceof IOException) { if (cause instanceof ClosedChannelException) { synchronized (ignoreClosedChannelExceptionLock) { if (ignoreClosedChannelException > 0) { ignoreClosedChannelException --; logger.debug( "Swallowing an exception raised while " + "writing non-app data", cause); return; } } } else if (engine.isOutboundDone()) { String message = String.valueOf(cause.getMessage()).toLowerCase(); if (IGNORABLE_ERROR_MESSAGE.matcher(message).matches()) { // It is safe to ignore the 'connection reset by peer' or // 'broken pipe' error after sending closure_notify. logger.debug( "Swallowing a 'connection reset by peer / " + "broken pipe' error occurred while writing " + "'closure_notify'", cause); // Close the connection explicitly just in case the transport // did not close the connection automatically. Channels.close(ctx, succeededFuture(e.getChannel())); return; } } } ctx.sendUpstream(e); } @Override protected Object decode( final ChannelHandlerContext ctx, Channel channel, ChannelBuffer buffer) throws Exception { if (buffer.readableBytes() < 5) { return null; } int packetLength = 0; // SSLv3 or TLS - Check ContentType boolean tls; switch (buffer.getUnsignedByte(buffer.readerIndex())) { case 20: // change_cipher_spec case 21: // alert case 22: // handshake case 23: // application_data tls = true; break; default: // SSLv2 or bad data tls = false; } if (tls) { // SSLv3 or TLS - Check ProtocolVersion int majorVersion = buffer.getUnsignedByte(buffer.readerIndex() + 1); if (majorVersion >= 3 && majorVersion < 10) { // SSLv3 or TLS packetLength = (getShort(buffer, buffer.readerIndex() + 3) & 0xFFFF) + 5; if (packetLength <= 5) { // Neither SSLv2 or TLSv1 (i.e. SSLv2 or bad data) tls = false; } } else { // Neither SSLv2 or TLSv1 (i.e. SSLv2 or bad data) tls = false; } } if (!tls) { // SSLv2 or bad data - Check the version boolean sslv2 = true; int headerLength = (buffer.getUnsignedByte( buffer.readerIndex()) & 0x80) != 0 ? 2 : 3; int majorVersion = buffer.getUnsignedByte( buffer.readerIndex() + headerLength + 1); if (majorVersion >= 2 && majorVersion < 10) { // SSLv2 if (headerLength == 2) { packetLength = (getShort(buffer, buffer.readerIndex()) & 0x7FFF) + 2; } else { packetLength = (getShort(buffer, buffer.readerIndex()) & 0x3FFF) + 3; } if (packetLength <= headerLength) { sslv2 = false; } } else { sslv2 = false; } if (!sslv2) { // Bad data - discard the buffer and raise an exception. SSLException e = new SSLException( "not an SSL/TLS record: " + ChannelBuffers.hexDump(buffer)); buffer.skipBytes(buffer.readableBytes()); throw e; } } assert packetLength > 0; if (buffer.readableBytes() < packetLength) { return null; } // We advance the buffer's readerIndex before calling unwrap() because // unwrap() can trigger FrameDecoder call decode(), this method, recursively. // The recursive call results in decoding the same packet twice if // the readerIndex is advanced *after* decode(). // // Here's an example: // 1) An SSL packet is received from the wire. // 2) SslHandler.decode() deciphers the packet and calls the user code. // 3) The user closes the channel in the same thread. // 4) The same thread triggers a channelDisconnected() event. // 5) FrameDecoder.cleanup() is called, and it calls SslHandler.decode(). // 6) SslHandler.decode() will feed the same packet with what was // deciphered at the step 2 again if the readerIndex was not advanced // before calling the user code. final int packetOffset = buffer.readerIndex(); buffer.skipBytes(packetLength); return unwrap(ctx, channel, buffer, packetOffset, packetLength); } /** * Reads a big-endian short integer from the buffer. Please note that we do not use * {@link ChannelBuffer#getShort(int)} because it might be a little-endian buffer. */ private static short getShort(ChannelBuffer buf, int offset) { return (short) (buf.getByte(offset) << 8 | buf.getByte(offset + 1) & 0xFF); } private ChannelFuture wrap(ChannelHandlerContext context, Channel channel) throws SSLException { ChannelFuture future = null; ChannelBuffer msg; ByteBuffer outNetBuf = bufferPool.acquire(); boolean success = true; boolean offered = false; boolean needsUnwrap = false; try { loop: for (;;) { // Acquire a lock to make sure unencrypted data is polled // in order and their encrypted counterpart is offered in // order. synchronized (pendingUnencryptedWrites) { PendingWrite pendingWrite = pendingUnencryptedWrites.peek(); if (pendingWrite == null) { break; } ByteBuffer outAppBuf = pendingWrite.outAppBuf; if (outAppBuf == null) { // A write request with an empty buffer pendingUnencryptedWrites.remove(); offerEncryptedWriteRequest( new DownstreamMessageEvent( channel, pendingWrite.future, ChannelBuffers.EMPTY_BUFFER, channel.getRemoteAddress())); offered = true; } else { SSLEngineResult result = null; try { synchronized (handshakeLock) { result = engine.wrap(outAppBuf, outNetBuf); } } finally { if (!outAppBuf.hasRemaining()) { pendingUnencryptedWrites.remove(); } } if (result.bytesProduced() > 0) { outNetBuf.flip(); msg = ChannelBuffers.buffer(outNetBuf.remaining()); msg.writeBytes(outNetBuf.array(), 0, msg.capacity()); outNetBuf.clear(); if (pendingWrite.outAppBuf.hasRemaining()) { // pendingWrite's future shouldn't be notified if // only partial data is written. future = succeededFuture(channel); } else { future = pendingWrite.future; } MessageEvent encryptedWrite = new DownstreamMessageEvent( channel, future, msg, channel.getRemoteAddress()); offerEncryptedWriteRequest(encryptedWrite); offered = true; } else if (result.getStatus() == Status.CLOSED) { // SSLEngine has been closed already. // Any further write attempts should be denied. success = false; break; } else { final HandshakeStatus handshakeStatus = result.getHandshakeStatus(); handleRenegotiation(handshakeStatus); switch (handshakeStatus) { case NEED_WRAP: if (outAppBuf.hasRemaining()) { break; } else { break loop; } case NEED_UNWRAP: needsUnwrap = true; break loop; case NEED_TASK: runDelegatedTasks(); break; case FINISHED: case NOT_HANDSHAKING: if (handshakeStatus == HandshakeStatus.FINISHED) { setHandshakeSuccess(channel); } if (result.getStatus() == Status.CLOSED) { success = false; } break loop; default: throw new IllegalStateException( "Unknown handshake status: " + handshakeStatus); } } } } } } catch (SSLException e) { success = false; setHandshakeFailure(channel, e); throw e; } finally { bufferPool.release(outNetBuf); if (offered) { flushPendingEncryptedWrites(context); } if (!success) { IllegalStateException cause = new IllegalStateException("SSLEngine already closed"); // Mark all remaining pending writes as failure if anything // wrong happened before the write requests are wrapped. // Please note that we do not call setFailure while a lock is // acquired, to avoid a potential dead lock. for (;;) { PendingWrite pendingWrite; synchronized (pendingUnencryptedWrites) { pendingWrite = pendingUnencryptedWrites.poll(); if (pendingWrite == null) { break; } } pendingWrite.future.setFailure(cause); } } } if (needsUnwrap) { unwrap(context, channel, ChannelBuffers.EMPTY_BUFFER, 0, 0); } if (future == null) { future = succeededFuture(channel); } return future; } private void offerEncryptedWriteRequest(MessageEvent encryptedWrite) { final boolean locked = pendingEncryptedWritesLock.tryLock(); try { pendingEncryptedWrites.offer(encryptedWrite); } finally { if (locked) { pendingEncryptedWritesLock.unlock(); } } } private void flushPendingEncryptedWrites(ChannelHandlerContext ctx) { // Avoid possible dead lock and data integrity issue // which is caused by cross communication between more than one channel // in the same VM. if (!pendingEncryptedWritesLock.tryLock()) { return; } try { MessageEvent e; while ((e = pendingEncryptedWrites.poll()) != null) { ctx.sendDownstream(e); } } finally { pendingEncryptedWritesLock.unlock(); } } private ChannelFuture wrapNonAppData(ChannelHandlerContext ctx, Channel channel) throws SSLException { ChannelFuture future = null; ByteBuffer outNetBuf = bufferPool.acquire(); SSLEngineResult result; try { for (;;) { synchronized (handshakeLock) { result = engine.wrap(EMPTY_BUFFER, outNetBuf); } if (result.bytesProduced() > 0) { outNetBuf.flip(); ChannelBuffer msg = ChannelBuffers.buffer(outNetBuf.remaining()); msg.writeBytes(outNetBuf.array(), 0, msg.capacity()); outNetBuf.clear(); future = future(channel); future.addListener(new ChannelFutureListener() { public void operationComplete(ChannelFuture future) throws Exception { if (future.getCause() instanceof ClosedChannelException) { synchronized (ignoreClosedChannelExceptionLock) { ignoreClosedChannelException ++; } } } }); write(ctx, future, msg); } final HandshakeStatus handshakeStatus = result.getHandshakeStatus(); handleRenegotiation(handshakeStatus); switch (handshakeStatus) { case FINISHED: setHandshakeSuccess(channel); runDelegatedTasks(); break; case NEED_TASK: runDelegatedTasks(); break; case NEED_UNWRAP: if (!Thread.holdsLock(handshakeLock)) { // unwrap shouldn't be called when this method was // called by unwrap - unwrap will keep running after // this method returns. unwrap(ctx, channel, ChannelBuffers.EMPTY_BUFFER, 0, 0); } break; case NOT_HANDSHAKING: case NEED_WRAP: break; default: throw new IllegalStateException( "Unexpected handshake status: " + handshakeStatus); } if (result.bytesProduced() == 0) { break; } } } catch (SSLException e) { setHandshakeFailure(channel, e); throw e; } finally { bufferPool.release(outNetBuf); } if (future == null) { future = succeededFuture(channel); } return future; } private ChannelBuffer unwrap( ChannelHandlerContext ctx, Channel channel, ChannelBuffer buffer, int offset, int length) throws SSLException { ByteBuffer inNetBuf = buffer.toByteBuffer(offset, length); ByteBuffer outAppBuf = bufferPool.acquire(); try { boolean needsWrap = false; loop: for (;;) { SSLEngineResult result; synchronized (handshakeLock) { if (!handshaken && !handshaking && !engine.getUseClientMode() && !engine.isInboundDone() && !engine.isOutboundDone()) { handshake(); } result = engine.unwrap(inNetBuf, outAppBuf); final HandshakeStatus handshakeStatus = result.getHandshakeStatus(); handleRenegotiation(handshakeStatus); switch (handshakeStatus) { case NEED_UNWRAP: if (inNetBuf.hasRemaining() && !engine.isInboundDone()) { break; } else { break loop; } case NEED_WRAP: wrapNonAppData(ctx, channel); break; case NEED_TASK: runDelegatedTasks(); break; case FINISHED: setHandshakeSuccess(channel); needsWrap = true; break loop; case NOT_HANDSHAKING: needsWrap = true; break loop; default: throw new IllegalStateException( "Unknown handshake status: " + handshakeStatus); } } } if (needsWrap) { // wrap() acquires pendingUnencryptedWrites first and then // handshakeLock. If handshakeLock is already hold by the // current thread, calling wrap() will lead to a dead lock // i.e. pendingUnencryptedWrites -> handshakeLock vs. // handshakeLock -> pendingUnencryptedLock -> handshakeLock // // There is also a same issue between pendingEncryptedWrites // and pendingUnencryptedWrites. if (!Thread.holdsLock(handshakeLock) && !pendingEncryptedWritesLock.isHeldByCurrentThread()) { wrap(ctx, channel); } } outAppBuf.flip(); if (outAppBuf.hasRemaining()) { ChannelBuffer frame = ChannelBuffers.buffer(outAppBuf.remaining()); frame.writeBytes(outAppBuf.array(), 0, frame.capacity()); return frame; } else { return null; } } catch (SSLException e) { setHandshakeFailure(channel, e); throw e; } finally { bufferPool.release(outAppBuf); } } private void handleRenegotiation(HandshakeStatus handshakeStatus) { if (handshakeStatus == HandshakeStatus.NOT_HANDSHAKING || handshakeStatus == HandshakeStatus.FINISHED) { // Not handshaking return; } if (!handshaken) { // Not renegotiation return; } final boolean renegotiate; synchronized (handshakeLock) { if (handshaking) { // Renegotiation in progress or failed already. // i.e. Renegotiation check has been done already below. return; } if (engine.isInboundDone() || engine.isOutboundDone()) { // Not handshaking but closing. return; } if (isEnableRenegotiation()) { // Continue renegotiation. renegotiate = true; } else { // Do not renegotiate. renegotiate = false; // Prevent reentrance of this method. handshaking = true; } } if (renegotiate) { // Renegotiate. handshake(); } else { // Raise an exception. fireExceptionCaught( ctx, new SSLException( "renegotiation attempted by peer; " + "closing the connection")); // Close the connection to stop renegotiation. Channels.close(ctx, succeededFuture(ctx.getChannel())); } } private void runDelegatedTasks() { for (;;) { final Runnable task; synchronized (handshakeLock) { task = engine.getDelegatedTask(); } if (task == null) { break; } delegatedTaskExecutor.execute(new Runnable() { public void run() { synchronized (handshakeLock) { task.run(); } } }); } } private void setHandshakeSuccess(Channel channel) { synchronized (handshakeLock) { handshaking = false; handshaken = true; if (handshakeFuture == null) { handshakeFuture = future(channel); } } handshakeFuture.setSuccess(); } private void setHandshakeFailure(Channel channel, SSLException cause) { synchronized (handshakeLock) { if (!handshaking) { return; } handshaking = false; handshaken = false; if (handshakeFuture == null) { handshakeFuture = future(channel); } // Release all resources such as internal buffers that SSLEngine // is managing. engine.closeOutbound(); try { engine.closeInbound(); } catch (SSLException e) { logger.debug( "SSLEngine.closeInbound() raised an exception after " + "a handshake failure.", e); } } handshakeFuture.setFailure(cause); } private void closeOutboundAndChannel( final ChannelHandlerContext context, final ChannelStateEvent e) { if (!e.getChannel().isConnected()) { context.sendDownstream(e); return; } boolean success = false; try { try { unwrap(context, e.getChannel(), ChannelBuffers.EMPTY_BUFFER, 0, 0); } catch (SSLException ex) { logger.debug("Failed to unwrap before sending a close_notify message", ex); } if (!engine.isInboundDone()) { if (sentCloseNotify.compareAndSet(false, true)) { engine.closeOutbound(); try { ChannelFuture closeNotifyFuture = wrapNonAppData(context, e.getChannel()); closeNotifyFuture.addListener( new ClosingChannelFutureListener(context, e)); success = true; } catch (SSLException ex) { logger.debug("Failed to encode a close_notify message", ex); } } } else { success = true; } } finally { if (!success) { context.sendDownstream(e); } } } private static final class PendingWrite { final ChannelFuture future; final ByteBuffer outAppBuf; PendingWrite(ChannelFuture future, ByteBuffer outAppBuf) { this.future = future; this.outAppBuf = outAppBuf; } } private static final class ClosingChannelFutureListener implements ChannelFutureListener { private final ChannelHandlerContext context; private final ChannelStateEvent e; ClosingChannelFutureListener( ChannelHandlerContext context, ChannelStateEvent e) { this.context = context; this.e = e; } public void operationComplete(ChannelFuture closeNotifyFuture) throws Exception { if (!(closeNotifyFuture.getCause() instanceof ClosedChannelException)) { Channels.close(context, e.getFuture()); } else { e.getFuture().setSuccess(); } } } public void beforeAdd(ChannelHandlerContext ctx) throws Exception { this.ctx = ctx; } public void afterAdd(ChannelHandlerContext ctx) throws Exception { // Unused } public void beforeRemove(ChannelHandlerContext ctx) throws Exception { // Unused } public void afterRemove(ChannelHandlerContext ctx) throws Exception { // Unused } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy