org.xnio.ByteBufferSlicePool Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of xnio-api Show documentation
Show all versions of xnio-api Show documentation
The API JAR of the XNIO project
/*
* JBoss, Home of Professional Open Source
*
* Copyright 2010 Red Hat, Inc. and/or its affiliates, and individual
* contributors as indicated by the @author tags.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.xnio;
import java.lang.ref.WeakReference;
import java.nio.ByteBuffer;
import java.security.AccessController;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ConcurrentLinkedQueue;
import static org.xnio._private.Messages.msg;
/**
* A buffer pooled allocator. This pool uses a series of buffer regions to back the
* returned pooled buffers. When the buffer is no longer needed, it should be freed back into the pool; failure
* to do so will cause the corresponding buffer area to be unavailable until the buffer is garbage-collected.
*
* If the buffer pool is no longer used, it is advisable to invoke {@link #clean()} to make
* sure that direct allocated buffers can be reused by a future instance.
*
* @author David M. Lloyd
* @author Flavia Rainone
* @deprecated See {@link ByteBufferPool}.
*/
public final class ByteBufferSlicePool implements Pool {
private static final int LOCAL_LENGTH;
private static final Queue FREE_DIRECT_BUFFERS;
static {
// read thread local size property
String value = AccessController.doPrivileged(new ReadPropertyAction("xnio.bufferpool.threadlocal.size", "12"));
int val;
try {
val = Integer.parseInt(value);
} catch (NumberFormatException ignored) {
val = 12;
}
LOCAL_LENGTH = val;
// free direct buffers queue to keep direct buffers that are out of reach because of garbage collection of pools
FREE_DIRECT_BUFFERS = new ConcurrentLinkedQueue<>();
}
private final Set refSet = Collections.synchronizedSet(new HashSet<>());
private final Queue sliceQueue;
private final BufferAllocator allocator;
private final int bufferSize;
private final int buffersPerRegion;
private final int threadLocalQueueSize;
private final List directBuffers;
private final ThreadLocal localQueueHolder = new ThreadLocalCacheWrapper(this);
/**
* Construct a new instance.
*
* @param allocator the buffer allocator to use
* @param bufferSize the size of each buffer
* @param maxRegionSize the maximum region size for each backing buffer
* @param threadLocalQueueSize the number of buffers to cache on each thread
*/
public ByteBufferSlicePool(final BufferAllocator allocator, final int bufferSize, final int maxRegionSize, final int threadLocalQueueSize) {
if (bufferSize <= 0) {
throw msg.parameterOutOfRange("bufferSize");
}
if (maxRegionSize < bufferSize) {
throw msg.parameterOutOfRange("bufferSize");
}
buffersPerRegion = maxRegionSize / bufferSize;
this.bufferSize = bufferSize;
this.allocator = allocator;
sliceQueue = new ConcurrentLinkedQueue<>();
this.threadLocalQueueSize = threadLocalQueueSize;
// handle direct byte buffer allocation for reuse of direct buffers
if (allocator == BufferAllocator.DIRECT_BYTE_BUFFER_ALLOCATOR) {
directBuffers = Collections.synchronizedList(new ArrayList<>());
} else {
directBuffers = null;
}
}
/**
* Construct a new instance.
*
* @param allocator the buffer allocator to use
* @param bufferSize the size of each buffer
* @param maxRegionSize the maximum region size for each backing buffer
*/
public ByteBufferSlicePool(final BufferAllocator allocator, final int bufferSize, final int maxRegionSize) {
this(allocator, bufferSize, maxRegionSize, LOCAL_LENGTH);
}
/**
* Construct a new instance, using a direct buffer allocator.
*
* @param bufferSize the size of each buffer
* @param maxRegionSize the maximum region size for each backing buffer
*/
public ByteBufferSlicePool(final int bufferSize, final int maxRegionSize) {
this(BufferAllocator.DIRECT_BYTE_BUFFER_ALLOCATOR, bufferSize, maxRegionSize);
}
/** {@inheritDoc} */
public Pooled allocate() {
Slice slice;
if (threadLocalQueueSize > 0) {
ThreadLocalCache localCache = localQueueHolder.get();
if(localCache.outstanding != threadLocalQueueSize) {
localCache.outstanding++;
}
slice = localCache.queue.poll();
if (slice != null) {
return new PooledByteBuffer(slice, slice.slice());
}
}
final Queue sliceQueue = this.sliceQueue;
slice = sliceQueue.poll();
if (slice != null) {
return new PooledByteBuffer(slice, slice.slice());
}
synchronized (sliceQueue) {
slice = sliceQueue.poll();
if (slice != null) {
return new PooledByteBuffer(slice, slice.slice());
}
final Slice newSlice = allocateSlices(buffersPerRegion, bufferSize);
return new PooledByteBuffer(newSlice, newSlice.slice());
}
}
private Slice allocateSlices(final int buffersPerRegion, final int bufferSize) {
// only true if using direct allocation
if (directBuffers != null) {
ByteBuffer region = FREE_DIRECT_BUFFERS.poll();
try {
if (region != null) {
return sliceReusedBuffer(region, buffersPerRegion, bufferSize);
}
region = allocator.allocate(buffersPerRegion * bufferSize);
return sliceAllocatedBuffer(region, buffersPerRegion, bufferSize);
} finally {
// add all directly allocated memory to directBuffers, so it can
// be added to FREE_DIRECT_BUFFERS on clean()
directBuffers.add(region);
}
}
return sliceAllocatedBuffer(
allocator.allocate(buffersPerRegion * bufferSize),
buffersPerRegion, bufferSize);
}
private Slice sliceReusedBuffer(final ByteBuffer region, final int buffersPerRegion, final int bufferSize) {
int maxI = Math.min(buffersPerRegion, region.capacity() / bufferSize);
// create slices
int idx = bufferSize;
for (int i = 1; i < maxI; i++) {
sliceQueue.add(new Slice(region, idx, bufferSize));
idx += bufferSize;
}
if (maxI == 0)
return allocateSlices(buffersPerRegion, bufferSize);
if (maxI < buffersPerRegion)
sliceQueue.add(allocateSlices(buffersPerRegion - maxI, bufferSize));
return new Slice(region, 0, bufferSize);
}
private Slice sliceAllocatedBuffer(final ByteBuffer region, final int buffersPerRegion, final int bufferSize) {
// create slices
int idx = bufferSize;
for (int i = 1; i < buffersPerRegion; i++) {
sliceQueue.add(new Slice(region, idx, bufferSize));
idx += bufferSize;
}
return new Slice(region, 0, bufferSize);
}
/**
* Cleans the pool, removing references to any buffers inside it.
* Should be invoked on pool disposal, when the pool will no longer be
* used.
*/
public void clean() {
ThreadLocalCache localCache = localQueueHolder.get();
if (!localCache.queue.isEmpty()) {
localCache.queue.clear();
}
if(!sliceQueue.isEmpty()) {
sliceQueue.clear();
}
// only true if using direct allocation
if (directBuffers != null) {
// pass everything that is directly allocated to free direct buffers
FREE_DIRECT_BUFFERS.addAll(directBuffers);
}
}
/**
* Return the size of the {@link ByteBuffer}s that are returned by {@link #allocate()}.
*/
public int getBufferSize() {
return bufferSize;
}
private ThreadLocalCache createThreadLocalCache() {
return new ThreadLocalCache(this);
}
private void freeThreadLocalCache(ThreadLocalCache cache) {
final ArrayDeque deque = cache.queue;
Slice slice = deque.poll();
while (slice != null) {
doFree(slice);
slice = deque.poll();
}
}
private void doFree(Slice region) {
if (threadLocalQueueSize > 0) {
final ThreadLocalCache localCache = localQueueHolder.get();
boolean cacheOk = false;
if(localCache.outstanding > 0) {
localCache.outstanding--;
cacheOk = true;
}
ArrayDeque localQueue = localCache.queue;
if (localQueue.size() == threadLocalQueueSize || !cacheOk) {
sliceQueue.add(region);
} else {
localQueue.add(region);
}
} else {
sliceQueue.add(region);
}
}
private final class PooledByteBuffer implements Pooled {
private final Slice region;
ByteBuffer buffer;
PooledByteBuffer(final Slice region, final ByteBuffer buffer) {
this.region = region;
this.buffer = buffer;
}
public void discard() {
final ByteBuffer buffer = this.buffer;
this.buffer = null;
if (buffer != null) {
// free when GC'd, no sooner
refSet.add(new Ref(buffer, region));
}
}
public void free() {
ByteBuffer buffer = this.buffer;
this.buffer = null;
if (buffer != null) {
// trust the user, repool the buffer
doFree(region);
}
}
public ByteBuffer getResource() {
final ByteBuffer buffer = this.buffer;
if (buffer == null) {
throw msg.bufferFreed();
}
return buffer;
}
public void close() {
free();
}
public String toString() {
return "Pooled buffer " + buffer;
}
}
// to prevent memory leaks via thread internal map for thread local, we need to
// make this class static or else the outer ByteBufferSlicePool
// is never collected while the thread is active
// Thread -> thread local map -> ThreadLocalCacheWrapper -> ThreadLocalCache -> queue -> Slices -> ByteBufferSlicePool
private static final class Slice {
private final ByteBuffer parent;
private Slice(final ByteBuffer parent, final int start, final int size) {
this.parent = (ByteBuffer) parent.duplicate().position(start).limit(start+size);
}
ByteBuffer slice() {
return parent.slice();
}
}
final class Ref extends AutomaticReference {
private final Slice region;
private Ref(final ByteBuffer referent, final Slice region) {
super(referent, AutomaticReference.PERMIT);
this.region = region;
}
protected void free() {
doFree(region);
refSet.remove(this);
}
}
final static class ThreadLocalCache {
// to prevent memory leaks via thread internal map for thread local, we need to
// weakly reference the outer ByteBufferSlicePool
// or else the pool is never collected while the thread is active
// Thread -> thread local map -> ThreadLocalCache -> pool
final WeakReference pool;
// internal queue of slices; used to prevent all threads synchronizing on a single queue
final ArrayDeque queue;
// indicates how many slices should be returned to queue on free
int outstanding = 0;
ThreadLocalCache(ByteBufferSlicePool pool) {
this.pool = new WeakReference<>(pool);
this.queue = new ArrayDeque(pool.threadLocalQueueSize) {
/**
* This sucks but there's no other way to ensure these buffers are returned to the pool.
*/
protected void finalize() {
final ByteBufferSlicePool pool = ThreadLocalCache.this.pool.get();
if (pool == null)
return;
final ArrayDeque deque = queue;
Slice slice = deque.poll();
while (slice != null) {
pool.doFree(slice);
slice = deque.poll();
}
}
};
}
}
private static class ThreadLocalCacheWrapper extends ThreadLocal {
// to prevent memory leaks via thread internal map for thread local, we need to
// weakly reference the outer ByteBufferSlicePool
// or else the pool is never collected while the thread is active
// Thread -> thread local map -> ThreadLocalCacheWrapper -> pool
private final WeakReference pool;
ThreadLocalCacheWrapper(ByteBufferSlicePool pool) {
this.pool = new WeakReference<>(pool);
}
protected ThreadLocalCache initialValue() {
final ByteBufferSlicePool pool = this.pool.get();
if (pool != null) {
//noinspection serial
return pool.createThreadLocalCache();
}
return null;
}
public void remove() {
final ByteBufferSlicePool pool = this.pool.get();
final ThreadLocalCache cache = get();
if (pool != null && cache != null) {
//noinspection serial
pool.freeThreadLocalCache(cache);
}
super.remove();
}
}
}