All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jbox2d.collision.WorldManifold Maven / Gradle / Ivy

Go to download

A 2D java physics engine, a port of the C++ Box2d engine. This is the core physics engine.

There is a newer version: 2.2.1.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2011, Daniel Murphy
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the  nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL DANIEL MURPHY BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 ******************************************************************************/
package org.jbox2d.collision;

import org.jbox2d.common.Mat22;
import org.jbox2d.common.MathUtils;
import org.jbox2d.common.Settings;
import org.jbox2d.common.Transform;
import org.jbox2d.common.Vec2;

// updated to rev 100
/**
 * This is used to compute the current state of a contact manifold.
 * 
 * @author daniel
 */
public class WorldManifold {
	/**
	 * World vector pointing from A to B
	 */
	public final Vec2 normal;
	
	/**
	 * World contact point (point of intersection)
	 */
	public final Vec2[] points;
	
	public WorldManifold() {
		normal = new Vec2();
		points = new Vec2[Settings.maxManifoldPoints];
		for (int i = 0; i < Settings.maxManifoldPoints; i++) {
			points[i] = new Vec2();
		}
	}

	private final Vec2 pool3 = new Vec2();
	private final Vec2 pool4 = new Vec2();
	
	public final void initialize(final Manifold manifold, final Transform xfA, float radiusA, final Transform xfB,
			float radiusB) {
		if (manifold.pointCount == 0) {
			return;
		}
		
		switch (manifold.type) {
			case CIRCLES :{
//				final Vec2 pointA = pool3;
//				final Vec2 pointB = pool4;
//				
//				normal.set(1, 0);
//				Transform.mulToOut(xfA, manifold.localPoint, pointA);
//				Transform.mulToOut(xfB, manifold.points[0].localPoint, pointB);
//				
//				if (MathUtils.distanceSquared(pointA, pointB) > Settings.EPSILON * Settings.EPSILON) {
//					normal.set(pointB).subLocal(pointA);
//					normal.normalize();
//				}
//				
//				cA.set(normal).mulLocal(radiusA).addLocal(pointA);
//				cB.set(normal).mulLocal(radiusB).subLocal(pointB).negateLocal();
//				points[0].set(cA).addLocal(cB).mulLocal(0.5f);
				final Vec2 pointA = pool3;
				final Vec2 pointB = pool4;
				
				normal.x = 1;
				normal.y = 0;
				pointA.x = xfA.position.x + xfA.R.col1.x * manifold.localPoint.x + xfA.R.col2.x * manifold.localPoint.y;
				pointA.y = xfA.position.y + xfA.R.col1.y * manifold.localPoint.x + xfA.R.col2.y * manifold.localPoint.y;
				pointB.x = xfB.position.x + xfB.R.col1.x * manifold.points[0].localPoint.x + xfB.R.col2.x * manifold.points[0].localPoint.y;
				pointB.y = xfB.position.y + xfB.R.col1.y * manifold.points[0].localPoint.x + xfB.R.col2.y * manifold.points[0].localPoint.y;
				
				if (MathUtils.distanceSquared(pointA, pointB) > Settings.EPSILON * Settings.EPSILON) {
					normal.x = pointB.x - pointA.x;
					normal.y = pointB.y - pointA.y;
					normal.normalize();
				}
				
				final float cAx = normal.x * radiusA + pointA.x;
				final float cAy = normal.y * radiusA + pointA.y;
				
				final float cBx = -normal.x * radiusB + pointB.x;
				final float cBy = -normal.y * radiusB + pointB.y;

				points[0].x = (cAx + cBx) *.5f;
				points[0].y = (cAy + cBy) *.5f;
			}
				break;
			case FACE_A : {
//				final Vec2 planePoint = pool3;
//				
//				Mat22.mulToOut(xfA.R, manifold.localNormal, normal);
//				Transform.mulToOut(xfA, manifold.localPoint, planePoint);
//				
//				final Vec2 clipPoint = pool4;
//				
//				for (int i = 0; i < manifold.pointCount; i++) {
//					// b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint);
//					// b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint,
//					// normal)) * normal;
//					// b2Vec2 cB = clipPoint - radiusB * normal;
//					// points[i] = 0.5f * (cA + cB);
//					Transform.mulToOut(xfB, manifold.points[i].localPoint, clipPoint);
//					// use cA as temporary for now
//					cA.set(clipPoint).subLocal(planePoint);
//					float scalar = radiusA - Vec2.dot(cA, normal);
//					cA.set(normal).mulLocal(scalar).addLocal(clipPoint);
//					cB.set(normal).mulLocal(radiusB).subLocal(clipPoint).negateLocal();
//					points[i].set(cA).addLocal(cB).mulLocal(0.5f);
//				}
				final Vec2 planePoint = pool3;
				
				normal.x = xfA.R.col1.x * manifold.localNormal.x + xfA.R.col2.x * manifold.localNormal.y;
				normal.y = xfA.R.col1.y * manifold.localNormal.x + xfA.R.col2.y * manifold.localNormal.y;
				planePoint.x = xfA.position.x + xfA.R.col1.x * manifold.localPoint.x + xfA.R.col2.x * manifold.localPoint.y;
				planePoint.y = xfA.position.y + xfA.R.col1.y * manifold.localPoint.x + xfA.R.col2.y * manifold.localPoint.y;
				
				final Vec2 clipPoint = pool4;
				
				for (int i = 0; i < manifold.pointCount; i++) {
					// b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint);
					// b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint,
					// normal)) * normal;
					// b2Vec2 cB = clipPoint - radiusB * normal;
					// points[i] = 0.5f * (cA + cB);
					

					clipPoint.x = xfB.position.x + xfB.R.col1.x * manifold.points[i].localPoint.x + xfB.R.col2.x * manifold.points[i].localPoint.y;
					clipPoint.y = xfB.position.y + xfB.R.col1.y * manifold.points[i].localPoint.x + xfB.R.col2.y * manifold.points[i].localPoint.y;
					
					final float scalar = radiusA - ((clipPoint.x - planePoint.x) * normal.x + (clipPoint.y - planePoint.y) * normal.y);
					
					final float cAx = normal.x * scalar + clipPoint.x;
					final float cAy = normal.y * scalar + clipPoint.y;
					
					final float cBx = - normal.x * radiusB + clipPoint.x;
					final float cBy = - normal.y * radiusB + clipPoint.y;
					
					points[i].x = (cAx + cBx)*.5f;
					points[i].y = (cAy + cBy)*.5f;
				}
			}
				break;
			case FACE_B :
				final Vec2 planePoint = pool3;
				
				final Mat22 R = xfB.R;
				normal.x = R.col1.x * manifold.localNormal.x + R.col2.x * manifold.localNormal.y;
				normal.y = R.col1.y * manifold.localNormal.x + R.col2.y * manifold.localNormal.y;
				final Vec2 v = manifold.localPoint;
				planePoint.x = xfB.position.x + xfB.R.col1.x * v.x + xfB.R.col2.x * v.y;
				planePoint.y = xfB.position.y + xfB.R.col1.y * v.x + xfB.R.col2.y * v.y;
				
				final Vec2 clipPoint = pool4;
				
				for (int i = 0; i < manifold.pointCount; i++) {
					// b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint);
					// b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint,
					// normal)) * normal;
					// b2Vec2 cA = clipPoint - radiusA * normal;
					// points[i] = 0.5f * (cA + cB);
					
//					Transform.mulToOut(xfA, manifold.points[i].localPoint, clipPoint);
//					cB.set(clipPoint).subLocal(planePoint);
//					float scalar = radiusB - Vec2.dot(cB, normal);
//					cB.set(normal).mulLocal(scalar).addLocal(clipPoint);
//					cA.set(normal).mulLocal(radiusA).subLocal(clipPoint).negateLocal();
//					points[i].set(cA).addLocal(cB).mulLocal(0.5f);
					
					// points[i] = 0.5f * (cA + cB);
					
					
					clipPoint.x = xfA.position.x + xfA.R.col1.x * manifold.points[i].localPoint.x + xfA.R.col2.x * manifold.points[i].localPoint.y;
					clipPoint.y = xfA.position.y + xfA.R.col1.y * manifold.points[i].localPoint.x + xfA.R.col2.y * manifold.points[i].localPoint.y;
					
					final float scalar = radiusB - ((clipPoint.x - planePoint.x) * normal.x + (clipPoint.y - planePoint.y) * normal.y);
					
					final float cBx =  normal.x * scalar + clipPoint.x;
					final float cBy =  normal.y * scalar + clipPoint.y;
					
					final float cAx = - normal.x * radiusA + clipPoint.x;
					final float cAy = - normal.y * radiusA + clipPoint.y;
					
					points[i].x = (cAx + cBx) *.5f;
					points[i].y = (cAy + cBy) *.5f;
				}
				// Ensure normal points from A to B.
				normal.x = -normal.x;
				normal.y = -normal.y;
				break;
		}
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy