commonMain.androidx.compose.ui.geometry.Offset.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ui-geometry-desktop Show documentation
Show all versions of ui-geometry-desktop Show documentation
Compose classes related to dimensions without units
The newest version!
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
@file:Suppress("NOTHING_TO_INLINE", "KotlinRedundantDiagnosticSuppress")
package androidx.compose.ui.geometry
import androidx.compose.runtime.Immutable
import androidx.compose.runtime.Stable
import androidx.compose.ui.util.lerp
import androidx.compose.ui.util.packFloats
import androidx.compose.ui.util.unpackFloat1
import androidx.compose.ui.util.unpackFloat2
import kotlin.math.sqrt
/** Constructs an Offset from the given relative [x] and [y] offsets */
@Stable inline fun Offset(x: Float, y: Float) = Offset(packFloats(x, y))
/**
* An immutable 2D floating-point offset.
*
* Generally speaking, Offsets can be interpreted in two ways:
* 1. As representing a point in Cartesian space a specified distance from a separately-maintained
* origin. For example, the top-left position of children in the [RenderBox] protocol is
* typically represented as an [Offset] from the top left of the parent box.
* 2. As a vector that can be applied to coordinates. For example, when painting a widget, the
* parent is passed an [Offset] from the screen's origin which it can add to the offsets of its
* children to find the [Offset] from the screen's origin to each of the children.
*
* Because a particular [Offset] can be interpreted as one sense at one time then as the other sense
* at a later time, the same class is used for both senses.
*
* See also:
* * [Size], which represents a vector describing the size of a rectangle.
*
* To create an [Offset], call the top-level function that accepts an x/y pair of coordinates:
* ```
* val offset = Offset(x, y)
* ```
*
* The primary constructor of [Offset] is intended to be used with the [packedValue] property to
* allow storing offsets in arrays or collections of primitives without boxing.
*
* @param packedValue [Long] value encoding the [x] and [y] components of the [Offset]. Encoded
* values can be obtained by using the [packedValue] property of existing [Offset] instances.
*/
@Immutable
@kotlin.jvm.JvmInline
value class Offset(val packedValue: Long) {
@Stable
inline val x: Float
get() = unpackFloat1(packedValue)
@Stable
inline val y: Float
get() = unpackFloat2(packedValue)
@Stable inline operator fun component1(): Float = x
@Stable inline operator fun component2(): Float = y
/** Returns a copy of this Offset instance optionally overriding the x or y parameter */
fun copy(x: Float = unpackFloat1(packedValue), y: Float = unpackFloat2(packedValue)) =
Offset(packFloats(x, y))
companion object {
/**
* An offset with zero magnitude.
*
* This can be used to represent the origin of a coordinate space.
*/
@Stable val Zero = Offset(0x0L)
/**
* An offset with infinite x and y components.
*
* See also [isFinite] to check whether both components are finite.
*/
// This is included for completeness, because [Size.infinite] exists.
@Stable val Infinite = Offset(DualFloatInfinityBase)
/**
* Represents an unspecified [Offset] value, usually a replacement for `null` when a
* primitive value is desired.
*/
@Stable val Unspecified = Offset(UnspecifiedPackedFloats)
}
/**
* Returns:
* - False if [x] or [y] is a NaN
* - True if [x] or [y] is infinite
* - True otherwise
*/
@Stable
inline fun isValid(): Boolean {
// Take the unsigned packed floats and see if they are < InfinityBase + 1 (first NaN)
val v = packedValue and DualUnsignedFloatMask
return (v - DualFirstNaN) and Uint64High32 == Uint64High32
}
/**
* The magnitude of the offset.
*
* If you need this value to compare it to another [Offset]'s distance, consider using
* [getDistanceSquared] instead, since it is cheaper to compute.
*/
@Stable
fun getDistance(): Float {
val x = unpackFloat1(packedValue)
val y = unpackFloat2(packedValue)
return sqrt(x * x + y * y)
}
/**
* The square of the magnitude of the offset.
*
* This is cheaper than computing the [getDistance] itself.
*/
@Stable
fun getDistanceSquared(): Float {
val x = unpackFloat1(packedValue)
val y = unpackFloat2(packedValue)
return x * x + y * y
}
/**
* Unary negation operator.
*
* Returns an offset with the coordinates negated.
*
* If the [Offset] represents an arrow on a plane, this operator returns the same arrow but
* pointing in the reverse direction.
*/
@Stable
inline operator fun unaryMinus(): Offset {
return Offset(packedValue xor DualFloatSignBit)
}
/**
* Binary subtraction operator.
*
* Returns an offset whose [x] value is the left-hand-side operand's [x] minus the
* right-hand-side operand's [x] and whose [y] value is the left-hand-side operand's [y] minus
* the right-hand-side operand's [y].
*/
@Stable
operator fun minus(other: Offset): Offset {
return Offset(
packFloats(
unpackFloat1(packedValue) - unpackFloat1(other.packedValue),
unpackFloat2(packedValue) - unpackFloat2(other.packedValue)
)
)
}
/**
* Binary addition operator.
*
* Returns an offset whose [x] value is the sum of the [x] values of the two operands, and whose
* [y] value is the sum of the [y] values of the two operands.
*/
@Stable
operator fun plus(other: Offset): Offset {
return Offset(
packFloats(
unpackFloat1(packedValue) + unpackFloat1(other.packedValue),
unpackFloat2(packedValue) + unpackFloat2(other.packedValue)
)
)
}
/**
* Multiplication operator.
*
* Returns an offset whose coordinates are the coordinates of the left-hand-side operand (an
* Offset) multiplied by the scalar right-hand-side operand (a Float).
*/
@Stable
operator fun times(operand: Float): Offset {
return Offset(
packFloats(unpackFloat1(packedValue) * operand, unpackFloat2(packedValue) * operand)
)
}
/**
* Division operator.
*
* Returns an offset whose coordinates are the coordinates of the left-hand-side operand (an
* Offset) divided by the scalar right-hand-side operand (a Float).
*/
@Stable
operator fun div(operand: Float): Offset {
return Offset(
packFloats(unpackFloat1(packedValue) / operand, unpackFloat2(packedValue) / operand)
)
}
/**
* Modulo (remainder) operator.
*
* Returns an offset whose coordinates are the remainder of dividing the coordinates of the
* left-hand-side operand (an Offset) by the scalar right-hand-side operand (a Float).
*/
@Stable
operator fun rem(operand: Float): Offset {
return Offset(
packFloats(unpackFloat1(packedValue) % operand, unpackFloat2(packedValue) % operand)
)
}
override fun toString() =
if (isSpecified) {
"Offset(${x.toStringAsFixed(1)}, ${y.toStringAsFixed(1)})"
} else {
// In this case reading the x or y properties will throw, and they don't contain
// meaningful
// values as strings anyway.
"Offset.Unspecified"
}
}
/**
* Linearly interpolate between two offsets.
*
* The [fraction] argument represents position on the timeline, with 0.0 meaning that the
* interpolation has not started, returning [start] (or something equivalent to [start]), 1.0
* meaning that the interpolation has finished, returning [stop] (or something equivalent to
* [stop]), and values in between meaning that the interpolation is at the relevant point on the
* timeline between [start] and [stop]. The interpolation can be extrapolated beyond 0.0 and 1.0, so
* negative values and values greater than 1.0 are valid (and can easily be generated by curves).
*
* Values for [fraction] are usually obtained from an [Animation], such as an
* `AnimationController`.
*/
@Stable
fun lerp(start: Offset, stop: Offset, fraction: Float): Offset {
return Offset(
packFloats(
lerp(unpackFloat1(start.packedValue), unpackFloat1(stop.packedValue), fraction),
lerp(unpackFloat2(start.packedValue), unpackFloat2(stop.packedValue), fraction)
)
)
}
/** True if both x and y values of the [Offset] are finite. NaN values are not considered finite. */
@Stable
inline val Offset.isFinite: Boolean
get() {
// Mask out the sign bit and do an equality check in each 32-bit lane
// against the "infinity base" mask (to check whether each packed float
// is infinite or not).
val v = (packedValue and DualFloatInfinityBase) xor DualFloatInfinityBase
return (v - Uint64Low32) and Uint64High32 == 0L
}
/** `false` when this is [Offset.Unspecified]. */
@Stable
inline val Offset.isSpecified: Boolean
get() = packedValue and DualUnsignedFloatMask != UnspecifiedPackedFloats
/** `true` when this is [Offset.Unspecified]. */
@Stable
inline val Offset.isUnspecified: Boolean
get() = packedValue and DualUnsignedFloatMask == UnspecifiedPackedFloats
/**
* If this [Offset] [isSpecified] then this is returned, otherwise [block] is executed and its
* result is returned.
*/
inline fun Offset.takeOrElse(block: () -> Offset): Offset = if (isSpecified) this else block()
© 2015 - 2025 Weber Informatics LLC | Privacy Policy