All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jetbrains.kotlin.resolve.calls.results.OverloadingConflictResolver.kt Maven / Gradle / Ivy

There is a newer version: 2.1.20-RC3
Show newest version
/*
 * Copyright 2010-2015 JetBrains s.r.o.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.jetbrains.kotlin.resolve.calls.results

import gnu.trove.THashSet
import gnu.trove.TObjectHashingStrategy
import org.jetbrains.kotlin.builtins.KotlinBuiltIns
import org.jetbrains.kotlin.descriptors.CallableDescriptor
import org.jetbrains.kotlin.descriptors.ScriptDescriptor
import org.jetbrains.kotlin.descriptors.VariableDescriptor
import org.jetbrains.kotlin.descriptors.Visibilities
import org.jetbrains.kotlin.resolve.calls.context.CheckArgumentTypesMode
import org.jetbrains.kotlin.resolve.calls.inference.toHandle
import org.jetbrains.kotlin.resolve.calls.model.MutableResolvedCall
import org.jetbrains.kotlin.resolve.calls.model.ResolvedCall
import org.jetbrains.kotlin.resolve.calls.model.VariableAsFunctionMutableResolvedCall
import org.jetbrains.kotlin.resolve.calls.model.VariableAsFunctionResolvedCall
import org.jetbrains.kotlin.types.KotlinType
import org.jetbrains.kotlin.types.TypeUtils

class OverloadingConflictResolver(private val builtIns: KotlinBuiltIns) {

    fun  findMaximallySpecific(
            candidates: Set>,
            checkArgumentsMode: CheckArgumentTypesMode,
            discriminateGenerics: Boolean,
            isDebuggerContext: Boolean
    ): MutableResolvedCall? =
            if (candidates.size <= 1)
                candidates.firstOrNull()
            else when (checkArgumentsMode) {
                CheckArgumentTypesMode.CHECK_CALLABLE_TYPE ->
                    uniquifyCandidatesSet(candidates).filter {
                        isDefinitelyMostSpecific(it, candidates) {
                            call1, call2 ->
                            isNotLessSpecificCallableReference(call1.resultingDescriptor, call2.resultingDescriptor)
                        }
                    }.singleOrNull()

                CheckArgumentTypesMode.CHECK_VALUE_ARGUMENTS ->
                    findMaximallySpecificCall(candidates, discriminateGenerics, isDebuggerContext)
            }

    fun  findMaximallySpecificVariableAsFunctionCalls(candidates: Set>): Set> {
        val variableCalls = candidates.mapTo(newResolvedCallSet>(candidates.size)) {
            if (it is VariableAsFunctionMutableResolvedCall)
                it.variableCall
            else
                throw AssertionError("Regular call among variable-as-function calls: $it")
        }

        val maxSpecificVariableCall = findMaximallySpecificCall(variableCalls, false, false) ?: return emptySet()

        return candidates.filterTo(newResolvedCallSet>(2)) {
            it.resultingVariableDescriptor == maxSpecificVariableCall.resultingDescriptor
        }
    }

    private fun  findMaximallySpecificCall(
            candidates: Set>,
            discriminateGenerics: Boolean,
            isDebuggerContext: Boolean
    ): MutableResolvedCall? {
        val filteredCandidates = uniquifyCandidatesSet(candidates)

        if (filteredCandidates.size <= 1) return filteredCandidates.singleOrNull()

        val conflictingCandidates = filteredCandidates.map {
            candidateCall ->
            FlatSignature.createFromResolvedCall(candidateCall)
        }

        val bestCandidatesByParameterTypes = conflictingCandidates.filter {
            candidate ->
            isMostSpecific(candidate, conflictingCandidates) {
                call1, call2 ->
                isNotLessSpecificCallWithArgumentMapping(call1, call2, discriminateGenerics)
            }
        }

        return bestCandidatesByParameterTypes.exactMaxWith {
            call1, call2 ->
            isOfNotLessSpecificShape(call1, call2) && isOfNotLessSpecificVisibilityForDebugger(call1, call2, isDebuggerContext)
        }?.origin
    }

    private inline fun  Collection.exactMaxWith(isNotWorse: (C, C) -> Boolean): C? {
        var result: C? = null
        for (candidate in this) {
            if (result == null || isNotWorse(candidate, result)) {
                result = candidate
            }
        }
        if (result == null) return null
        if (any { it != result && isNotWorse(it, result!!) }) {
            return null
        }
        return result
    }

    private inline fun  isMostSpecific(candidate: C, candidates: Collection, isNotLessSpecific: (C, C) -> Boolean): Boolean =
            candidates.all {
                other ->
                candidate === other ||
                isNotLessSpecific(candidate, other)
            }

    private inline fun  isDefinitelyMostSpecific(candidate: C, candidates: Collection, isNotLessSpecific: (C, C) -> Boolean): Boolean =
            candidates.all {
                other ->
                candidate === other ||
                isNotLessSpecific(candidate, other) && !isNotLessSpecific(other, candidate)
            }

    /**
     * `call1` is not less specific than `call2`
     */
    private fun  isNotLessSpecificCallWithArgumentMapping(
            call1: FlatSignature>,
            call2: FlatSignature>,
            discriminateGenerics: Boolean
    ): Boolean {
        return tryCompareDescriptorsFromScripts(call1.candidateDescriptor(), call2.candidateDescriptor()) ?:
               compareCallsByUsedArguments(call1, call2, discriminateGenerics)
    }

    /**
     * Returns `true` if `d1` is definitely not less specific than `d2`,
     * `false` otherwise.
     */
    private fun  compareCallsByUsedArguments(
            call1: FlatSignature>,
            call2: FlatSignature>,
            discriminateGenerics: Boolean
    ): Boolean {
        if (discriminateGenerics) {
            val isGeneric1 = call1.isGeneric
            val isGeneric2 = call2.isGeneric
            // generic loses to non-generic
            if (isGeneric1 && !isGeneric2) return false
            if (!isGeneric1 && isGeneric2) return true
            // two generics are non-comparable
            if (isGeneric1 && isGeneric2) return false
        }

        return isSignatureNotLessSpecific(call1, call2, SpecificityComparisonWithNumerics, call1.callHandle())
    }

    private val SpecificityComparisonWithNumerics = object : SpecificityComparisonCallbacks {
        override fun isNonSubtypeNotLessSpecific(specific: KotlinType, general: KotlinType): Boolean {
            val _double = builtIns.doubleType
            val _float = builtIns.floatType
            val _long = builtIns.longType
            val _int = builtIns.intType
            val _byte = builtIns.byteType
            val _short = builtIns.shortType

            when {
                TypeUtils.equalTypes(specific, _double) && TypeUtils.equalTypes(general, _float) -> return true
                TypeUtils.equalTypes(specific, _int) -> {
                    when {
                        TypeUtils.equalTypes(general, _long) -> return true
                        TypeUtils.equalTypes(general, _byte) -> return true
                        TypeUtils.equalTypes(general, _short) -> return true
                    }
                }
                TypeUtils.equalTypes(specific, _short) && TypeUtils.equalTypes(general, _byte) -> return true
            }

            return false
        }
    }

    private fun  isOfNotLessSpecificShape(
            call1: FlatSignature>,
            call2: FlatSignature>
    ): Boolean {
        val hasVarargs1 = call1.hasVarargs
        val hasVarargs2 = call2.hasVarargs
        if (hasVarargs1 && !hasVarargs2) return false
        if (!hasVarargs1 && hasVarargs2) return true

        if (call1.numDefaults > call2.numDefaults) {
            return false
        }

        return true
    }

    private fun  isOfNotLessSpecificVisibilityForDebugger(
            call1: FlatSignature>,
            call2: FlatSignature>,
            isDebuggerContext: Boolean
    ): Boolean {
        if (isDebuggerContext) {
            val isMoreVisible1 = Visibilities.compare(call1.descriptorVisibility(), call2.descriptorVisibility())
            if (isMoreVisible1 != null && isMoreVisible1 < 0) return false
        }

        return true
    }

    /**
     * Returns `true` if `d1` is definitely not less specific than `d2`,
     * `false` if `d1` is definitely less specific than `d2`,
     * `null` if undecided.
     */
    private fun tryCompareDescriptorsFromScripts(d1: CallableDescriptor, d2: CallableDescriptor): Boolean? {
        val containingDeclaration1 = d1.containingDeclaration
        val containingDeclaration2 = d2.containingDeclaration

        if (containingDeclaration1 is ScriptDescriptor && containingDeclaration2 is ScriptDescriptor) {
            when {
                containingDeclaration1.priority > containingDeclaration2.priority -> return true
                containingDeclaration1.priority < containingDeclaration2.priority -> return false
            }
        }
        return null
    }

    /**
     * Returns `true` if `f` is definitely not less specific than `g`,
     * `false` if `f` is definitely less specific than `g`,
     * `null` if undecided.
     */
    private fun isNotLessSpecificCallableReferenceDescriptor(f: CallableDescriptor, g: CallableDescriptor): Boolean {
        if (f.valueParameters.size != g.valueParameters.size) return false
        if (f.varargParameterPosition() != g.varargParameterPosition()) return false

        val fSignature = FlatSignature.createFromCallableDescriptor(f)
        val gSignature = FlatSignature.createFromCallableDescriptor(g)
        return isSignatureNotLessSpecific(fSignature, gSignature, SpecificityComparisonWithNumerics)
    }

    private fun isNotLessSpecificCallableReference(f: CallableDescriptor, g: CallableDescriptor): Boolean =
            // TODO should we "discriminate generic descriptors" for callable references?
            tryCompareDescriptorsFromScripts(f, g) ?:
            isNotLessSpecificCallableReferenceDescriptor(f, g)

    companion object {
        // Different smartcasts may lead to the same candidate descriptor wrapped into different ResolvedCallImpl objects
        @Suppress("CAST_NEVER_SUCCEEDS")
        private fun  uniquifyCandidatesSet(candidates: Collection>): Set> =
                THashSet>(candidates.size, getCallHashingStrategy>()).apply { addAll(candidates) }

        @Suppress("CAST_NEVER_SUCCEEDS")
        private fun  newResolvedCallSet(expectedSize: Int): MutableSet =
                THashSet(expectedSize, getCallHashingStrategy())

        private object ResolvedCallHashingStrategy : TObjectHashingStrategy> {
            override fun equals(call1: ResolvedCall<*>?, call2: ResolvedCall<*>?): Boolean =
                    if (call1 != null && call2 != null)
                        call1.resultingDescriptor == call2.resultingDescriptor
                    else
                        call1 == call2

            override fun computeHashCode(call: ResolvedCall<*>?): Int =
                    call?.resultingDescriptor?.hashCode() ?: 0
        }

        private val MutableResolvedCall<*>.resultingVariableDescriptor: VariableDescriptor
            get() = (this as VariableAsFunctionResolvedCall).variableCall.resultingDescriptor

        @Suppress("UNCHECKED_CAST", "CAST_NEVER_SUCCEEDS")
        private fun  getCallHashingStrategy() =
                ResolvedCallHashingStrategy as TObjectHashingStrategy

    }
}

internal fun  FlatSignature>.candidateDescriptor() =
        origin.candidateDescriptor.original

internal fun  FlatSignature>.callHandle() =
        origin.call.toHandle()

internal fun  FlatSignature>.descriptorVisibility() =
        candidateDescriptor().visibility

internal fun CallableDescriptor.varargParameterPosition() =
        valueParameters.indexOfFirst { it.varargElementType != null }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy