org.jetbrains.kotlin.fir.analysis.checkers.FirCastDiagnosticsHelpers.kt Maven / Gradle / Ivy
/*
* Copyright 2010-2021 JetBrains s.r.o. and Kotlin Programming Language contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package org.jetbrains.kotlin.fir.analysis.checkers
import org.jetbrains.kotlin.fir.analysis.checkers.context.CheckerContext
import org.jetbrains.kotlin.fir.declarations.utils.isLocal
import org.jetbrains.kotlin.fir.expressions.*
import org.jetbrains.kotlin.fir.resolve.defaultType
import org.jetbrains.kotlin.fir.resolve.getClassAndItsOuterClassesWhenLocal
import org.jetbrains.kotlin.fir.resolve.substitution.ConeSubstitutorByMap
import org.jetbrains.kotlin.fir.symbols.impl.FirFunctionSymbol
import org.jetbrains.kotlin.fir.symbols.impl.FirRegularClassSymbol
import org.jetbrains.kotlin.fir.symbols.impl.FirTypeParameterSymbol
import org.jetbrains.kotlin.fir.types.*
import org.jetbrains.kotlin.types.AbstractTypeChecker
import org.jetbrains.kotlin.types.AbstractTypeChecker.findCorrespondingSupertypes
import org.jetbrains.kotlin.types.model.typeConstructor
fun isCastErased(supertype: ConeKotlinType, subtype: ConeKotlinType, context: CheckerContext): Boolean {
val typeContext = context.session.typeContext
val isNonReifiedTypeParameter = subtype.isNonReifiedTypeParameter()
val isUpcast = isUpcast(context, supertype, subtype)
// here we want to restrict cases such as `x is T` for x = T?, when T might have nullable upper bound
if (isNonReifiedTypeParameter && !isUpcast) {
// hack to save previous behavior in case when `x is T`, where T is not nullable, see IsErasedNullableTasT.kt
val nullableToDefinitelyNotNull = !subtype.canBeNull(context.session) && supertype.withNullability(ConeNullability.NOT_NULL, typeContext) == subtype
if (!nullableToDefinitelyNotNull) {
return true
}
}
// cast between T and T? is always OK
if ((supertype !is ConeErrorType && supertype.isMarkedNullable) || (subtype !is ConeErrorType && subtype.isMarkedNullable)) {
return isCastErased(
supertype.withNullability(ConeNullability.NOT_NULL, typeContext),
subtype.withNullability(ConeNullability.NOT_NULL, typeContext),
context
)
}
// if it is a upcast, it's never erased
if (isUpcast) return false
// downcasting to a non-reified type parameter is always erased
if (isNonReifiedTypeParameter) return true
// downcasting to a reified type parameter is never erased
else if (subtype is ConeTypeParameterType) return false
val regularClassSymbol = subtype.toRegularClassSymbol(context.session) ?: return true
val outerClasses = regularClassSymbol.getClassAndItsOuterClassesWhenLocal(context.session)
if (regularClassSymbol.isLocal && regularClassSymbol.typeParameterSymbols.any { it.containingDeclarationSymbol !in outerClasses }) {
return true
}
val staticallyKnownSubtype = findStaticallyKnownSubtype(supertype, regularClassSymbol, context)
// If the substitution failed, it means that the result is an impossible type, e.g. something like Out
// In this case, we can't guarantee anything, so the cast is considered to be erased
// If the type we calculated is a subtype of the cast target, it's OK to use the cast target instead.
// If not, it's wrong to use it
return !AbstractTypeChecker.isSubtypeOf(context.session.typeContext, staticallyKnownSubtype, subtype, stubTypesEqualToAnything = false)
}
/**
* Remember that we are trying to cast something of type `supertype` to `subtype`.
* Since at runtime we can only check the class (type constructor), the rest of the subtype should be known statically, from supertype.
* This method reconstructs all static information that can be obtained from supertype.
* Example 1:
* supertype = Collection
* subtype = List<...>
* result = List, all arguments are inferred
* Example 2:
* supertype = Any
* subtype = List<...>
* result = List<*>, some arguments were not inferred, replaced with '*'
*/
fun findStaticallyKnownSubtype(
supertype: ConeKotlinType,
subTypeClassSymbol: FirRegularClassSymbol,
context: CheckerContext
): ConeKotlinType {
assert(!supertype.isMarkedNullable) { "This method only makes sense for non-nullable types" }
val session = context.session
val typeContext = session.typeContext
// Assume we are casting an expression of type Collection to List
// First, let's make List, where T is a type variable
val subtypeWithVariablesType = subTypeClassSymbol.defaultType()
// Now, let's find a supertype of List that is a Collection of something,
// in this case it will be Collection
val typeCheckerState = context.session.typeContext.newTypeCheckerState(
errorTypesEqualToAnything = false,
stubTypesEqualToAnything = false
)
val normalizedTypes = if (supertype is ConeIntersectionType) {
supertype.intersectedTypes
} else {
ArrayList(1).also { it.add(supertype) }
}
val resultSubstitution = mutableMapOf()
for (normalizedType in normalizedTypes) {
val supertypeWithVariables =
findCorrespondingSupertypes(
typeCheckerState,
subtypeWithVariablesType,
normalizedType.typeConstructor(typeContext)
).firstOrNull()
val variables: List = subTypeClassSymbol.typeParameterSymbols
val substitution = if (supertypeWithVariables != null) {
// Now, let's try to unify Collection and Collection solution is a map from T to Foo
val result = mutableMapOf()
if (context.session.doUnify(
supertype,
supertypeWithVariables as ConeKotlinTypeProjection,
variables.toSet(),
result
)
) {
result
} else {
mutableMapOf()
}
} else {
mutableMapOf()
}
// If some parameters are not determined by unification, it means that these parameters are lost,
// let's put ConeStubType instead, so that we can only cast to something like List<*>, e.g. (a: Any) as List<*>
for (variable in variables) {
val resultValue = when (val value = substitution[variable]) {
null -> null
is ConeStarProjection -> {
ConeStubTypeForTypeVariableInSubtyping(ConeTypeVariable("", null), ConeNullability.NULLABLE)
}
else -> value.type
}
if (resultValue != null) {
resultSubstitution[variable] = resultValue
}
}
}
// At this point we have values for all type parameters of List
// Let's make a type by substituting them: List -> List
val substitutor = ConeSubstitutorByMap.create(resultSubstitution, session)
return substitutor.substituteOrSelf(subtypeWithVariablesType)
}
fun ConeKotlinType.isNonReifiedTypeParameter(): Boolean {
return this is ConeTypeParameterType && !this.lookupTag.typeParameterSymbol.isReified
}
fun isUpcast(context: CheckerContext, candidateType: ConeKotlinType, targetType: ConeKotlinType): Boolean =
AbstractTypeChecker.isSubtypeOf(context.session.typeContext, candidateType, targetType, stubTypesEqualToAnything = false)
internal fun isRefinementUseless(
context: CheckerContext,
lhsType: ConeKotlinType,
targetType: ConeKotlinType,
expression: FirTypeOperatorCall,
): Boolean {
if (lhsType is ConeErrorType || targetType is ConeErrorType) {
return false
}
val arg = expression.argument
return when (expression.operation) {
FirOperation.AS, FirOperation.SAFE_AS -> {
if (arg is FirFunctionCall) {
val functionSymbol = arg.toResolvedCallableSymbol(context.session) as? FirFunctionSymbol<*>
if (functionSymbol != null && functionSymbol.isFunctionForExpectTypeFromCastFeature()) return false
}
// Normalize `targetType` for cases like the following:
// fun f(x: Int?) { x as? Int } // USELESS_CAST is reasonable here
val refinedTargetType =
if (expression.operation == FirOperation.SAFE_AS && lhsType.isNullable) {
targetType.withNullability(ConeNullability.NULLABLE, context.session.typeContext)
} else {
targetType
}
isExactTypeCast(context, lhsType, refinedTargetType)
}
FirOperation.IS, FirOperation.NOT_IS -> {
isUpcast(context, lhsType, targetType)
}
else -> throw AssertionError("Should not be here: ${expression.operation}")
}
}
private fun isExactTypeCast(context: CheckerContext, lhsType: ConeKotlinType, targetType: ConeKotlinType): Boolean =
AbstractTypeChecker.equalTypes(context.session.typeContext, lhsType, targetType, stubTypesEqualToAnything = false)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy