commonMain.jetbrains.datalore.plot.config.StatProto.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lets-plot-common Show documentation
Show all versions of lets-plot-common Show documentation
Lets-Plot JVM package without rendering part
/*
* Copyright (c) 2019. JetBrains s.r.o.
* Use of this source code is governed by the MIT license that can be found in the LICENSE file.
*/
package jetbrains.datalore.plot.config
import jetbrains.datalore.plot.base.GeomKind
import jetbrains.datalore.plot.base.Stat
import jetbrains.datalore.plot.base.stat.*
import jetbrains.datalore.plot.config.Option.Stat.Bin
import jetbrains.datalore.plot.config.Option.Stat.Bin2d
import jetbrains.datalore.plot.config.Option.Stat.Boxplot
import jetbrains.datalore.plot.config.Option.Stat.Contour
import jetbrains.datalore.plot.config.Option.Stat.Corr
import jetbrains.datalore.plot.config.Option.Stat.Density
import jetbrains.datalore.plot.config.Option.Stat.Density2d
import jetbrains.datalore.plot.config.Option.Stat.Smooth
object StatProto {
internal fun defaultOptions(statName: String, geomKind: GeomKind): Map {
return when (StatKind.safeValueOf(statName)) {
StatKind.CORR -> {
when (geomKind) {
GeomKind.TILE -> mapOf(
"size" to 0.0 // 'corr' is mapped to the outline color 'color' - avoid on 'tiles'.
)
GeomKind.POINT,
GeomKind.TEXT -> mapOf(
"size" to 0.8,
"size_unit" to "x",
"label_format" to ".2f"
)
else -> emptyMap()
}
}
else -> emptyMap()
}
}
internal fun createStat(statKind: StatKind, options: OptionsAccessor): Stat {
when (statKind) {
StatKind.IDENTITY -> return Stats.IDENTITY
StatKind.COUNT -> return Stats.count()
StatKind.BIN -> {
return Stats.bin(
binCount = options.getIntegerDef(Bin.BINS, BinStat.DEF_BIN_COUNT),
binWidth = options.getDouble(Bin.BINWIDTH),
center = options.getDouble(Bin.CENTER),
boundary = options.getDouble(Bin.BOUNDARY)
)
}
StatKind.BIN2D -> {
val (binCountX, binCountY) = options.getNumPairDef(
Bin2d.BINS,
Pair(Bin2dStat.DEF_BINS, Bin2dStat.DEF_BINS)
)
val (binWidthX, binWidthY) = options.getNumQPairDef(
Bin2d.BINWIDTH,
Pair(Bin2dStat.DEF_BINWIDTH, Bin2dStat.DEF_BINWIDTH)
)
return Bin2dStat(
binCountX = binCountX.toInt(),
binCountY = binCountY.toInt(),
binWidthX = binWidthX?.toDouble(),
binWidthY = binWidthY?.toDouble(),
drop = options.getBoolean(Bin2d.DROP, def = Bin2dStat.DEF_DROP)
)
}
StatKind.CONTOUR -> {
return ContourStat(
binCount = options.getIntegerDef(Contour.BINS, ContourStat.DEF_BIN_COUNT),
binWidth = options.getDouble(Contour.BINWIDTH),
)
}
StatKind.CONTOURF -> {
return ContourfStat(
binCount = options.getIntegerDef(Contour.BINS, ContourStat.DEF_BIN_COUNT),
binWidth = options.getDouble(Contour.BINWIDTH),
)
}
StatKind.SMOOTH -> return configureSmoothStat(options)
StatKind.CORR -> return configureCorrStat(options)
StatKind.BOXPLOT -> {
return Stats.boxplot(
whiskerIQRRatio = options.getDoubleDef(Boxplot.COEF, BoxplotStat.DEF_WHISKER_IQR_RATIO),
computeWidth = options.getBoolean(Boxplot.VARWIDTH, BoxplotStat.DEF_COMPUTE_WIDTH)
)
}
StatKind.DENSITY -> return configureDensityStat(options)
StatKind.DENSITY2D -> return configureDensity2dStat(options, false)
StatKind.DENSITY2DF -> return configureDensity2dStat(options, true)
else -> throw IllegalArgumentException("Unknown stat: '$statKind'")
}
}
private fun configureSmoothStat(options: OptionsAccessor): SmoothStat {
// Params:
// method - smoothing method: lm, glm, gam, loess, rlm
// n (80) - number of points to evaluate smoother at
// se (TRUE ) - display confidence interval around smooth?
// level (0.95) - level of confidence interval to use
// deg ( >= 1 ) - degree of polynomial for regression
// seed - random seed for LOESS sampling
// max_n (1000) - maximum points in DF for LOESS
val smoothingMethod = options.getString(Smooth.METHOD)?.let {
when (it.lowercase()) {
"lm" -> SmoothStat.Method.LM
"loess", "lowess" -> SmoothStat.Method.LOESS
"glm" -> SmoothStat.Method.GLM
"gam" -> SmoothStat.Method.GAM
"rlm" -> SmoothStat.Method.RLM
else -> throw IllegalArgumentException(
"Unsupported smoother method: '$it'\n" +
"Use one of: lm, loess, lowess, glm, gam, rlm."
)
}
}
return SmoothStat(
smootherPointCount = options.getIntegerDef(Smooth.POINT_COUNT, SmoothStat.DEF_EVAL_POINT_COUNT),
smoothingMethod = smoothingMethod ?: SmoothStat.DEF_SMOOTHING_METHOD,
confidenceLevel = options.getDoubleDef(Smooth.CONFIDENCE_LEVEL, SmoothStat.DEF_CONFIDENCE_LEVEL),
displayConfidenceInterval = options.getBoolean(
Smooth.DISPLAY_CONFIDENCE_INTERVAL,
SmoothStat.DEF_DISPLAY_CONFIDENCE_INTERVAL
),
span = options.getDoubleDef(Smooth.SPAN, SmoothStat.DEF_SPAN),
polynomialDegree = options.getIntegerDef(Smooth.POLYNOMIAL_DEGREE, SmoothStat.DEF_DEG),
loessCriticalSize = options.getIntegerDef(Smooth.LOESS_CRITICAL_SIZE, SmoothStat.DEF_LOESS_CRITICAL_SIZE),
samplingSeed = options.getLongDef(Smooth.LOESS_CRITICAL_SIZE, SmoothStat.DEF_SAMPLING_SEED)
)
}
private fun configureCorrStat(options: OptionsAccessor): CorrelationStat {
val correlationMethod = options.getString(Corr.METHOD)?.let {
when (it.lowercase()) {
"pearson" -> CorrelationStat.Method.PEARSON
else -> throw IllegalArgumentException("Unsupported correlation method: '$it'. Must be: 'pearson'")
}
}
val type = options.getString(Corr.TYPE)?.let {
when (it.lowercase()) {
"full" -> CorrelationStat.Type.FULL
"upper" -> CorrelationStat.Type.UPPER
"lower" -> CorrelationStat.Type.LOWER
else -> throw IllegalArgumentException("Unsupported matrix type: '$it'. Expected: 'full', 'upper' or 'lower'.")
}
}
return CorrelationStat(
correlationMethod = correlationMethod ?: CorrelationStat.DEF_CORRELATION_METHOD,
type = type ?: CorrelationStat.DEF_TYPE,
fillDiagonal = options.getBoolean(Corr.FILL_DIAGONAL, CorrelationStat.DEF_FILL_DIAGONAL),
threshold = options.getDoubleDef(Corr.THRESHOLD, CorrelationStat.DEF_THRESHOLD)
)
}
private fun configureDensityStat(options: OptionsAccessor): DensityStat {
var bwValue: Double? = null
var bwMethod: DensityStat.BandWidthMethod = DensityStat.DEF_BW
options[Density.BAND_WIDTH]?.run {
if (this is Number) {
bwValue = this.toDouble()
} else if (this is String) {
bwMethod = DensityStatUtil.toBandWidthMethod(this)
}
}
val kernel = options.getString(Density.KERNEL)?.let {
DensityStatUtil.toKernel(it)
}
return DensityStat(
bandWidth = bwValue,
bandWidthMethod = bwMethod,
adjust = options.getDoubleDef(Density.ADJUST, DensityStat.DEF_ADJUST),
kernel = kernel ?: DensityStat.DEF_KERNEL,
n = options.getIntegerDef(Density.N, DensityStat.DEF_N),
fullScalMax = options.getIntegerDef(Density.FULL_SCAN_MAX, DensityStat.DEF_FULL_SCAN_MAX),
)
}
private fun configureDensity2dStat(options: OptionsAccessor, filled: Boolean): AbstractDensity2dStat {
var bwValueX: Double? = null
var bwValueY: Double? = null
var bwMethod: DensityStat.BandWidthMethod? = null
options[Density2d.BAND_WIDTH]?.run {
if (this is Number) {
bwValueX = this.toDouble()
bwValueY = this.toDouble()
} else if (this is String) {
bwMethod = DensityStatUtil.toBandWidthMethod(this)
} else if (this is List<*>) {
for ((i, v) in this.withIndex()) {
when (i) {
0 -> bwValueX = v?.let { (v as Number).toDouble() }
1 -> bwValueY = v?.let { (v as Number).toDouble() }
else -> break
}
}
}
}
val kernel = options.getString(Density2d.KERNEL)?.let {
DensityStatUtil.toKernel(it)
}
var nX: Int? = null
var nY: Int? = null
options[Density2d.N]?.run {
if (this is Number) {
nX = this.toInt()
nY = this.toInt()
} else if (this is List<*>) {
for ((i, v) in this.withIndex()) {
when (i) {
0 -> nX = v?.let { (v as Number).toInt() }
1 -> nY = v?.let { (v as Number).toInt() }
else -> break
}
}
}
}
return if (filled) {
Density2dfStat(
bandWidthX = bwValueX,
bandWidthY = bwValueY,
bandWidthMethod = bwMethod ?: AbstractDensity2dStat.DEF_BW,
adjust = options.getDoubleDef(Density2d.ADJUST, AbstractDensity2dStat.DEF_ADJUST),
kernel = kernel ?: AbstractDensity2dStat.DEF_KERNEL,
nX = nX ?: AbstractDensity2dStat.DEF_N,
nY = nY ?: AbstractDensity2dStat.DEF_N,
isContour = options.getBoolean(Density2d.IS_CONTOUR, AbstractDensity2dStat.DEF_CONTOUR),
binCount = options.getIntegerDef(Density2d.BINS, AbstractDensity2dStat.DEF_BIN_COUNT),
binWidth = options.getDoubleDef(Density2d.BINWIDTH, AbstractDensity2dStat.DEF_BIN_WIDTH)
)
} else {
Density2dStat(
bandWidthX = bwValueX,
bandWidthY = bwValueY,
bandWidthMethod = bwMethod ?: AbstractDensity2dStat.DEF_BW,
adjust = options.getDoubleDef(Density2d.ADJUST, AbstractDensity2dStat.DEF_ADJUST),
kernel = kernel ?: AbstractDensity2dStat.DEF_KERNEL,
nX = nX ?: AbstractDensity2dStat.DEF_N,
nY = nY ?: AbstractDensity2dStat.DEF_N,
isContour = options.getBoolean(Density2d.IS_CONTOUR, AbstractDensity2dStat.DEF_CONTOUR),
binCount = options.getIntegerDef(Density2d.BINS, AbstractDensity2dStat.DEF_BIN_COUNT),
binWidth = options.getDoubleDef(Density2d.BINWIDTH, AbstractDensity2dStat.DEF_BIN_WIDTH)
)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy