commonMain.jetbrains.datalore.plot.base.stat.DensityStat.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lets-plot-common Show documentation
Show all versions of lets-plot-common Show documentation
Lets-Plot JVM package without rendering part
/*
* Copyright (c) 2019. JetBrains s.r.o.
* Use of this source code is governed by the MIT license that can be found in the LICENSE file.
*/
package jetbrains.datalore.plot.base.stat
import jetbrains.datalore.base.interval.DoubleSpan
import jetbrains.datalore.plot.base.Aes
import jetbrains.datalore.plot.base.DataFrame
import jetbrains.datalore.plot.base.StatContext
import jetbrains.datalore.plot.base.data.TransformVar
import jetbrains.datalore.plot.base.stat.DensityStat.BandWidthMethod.NRD0
import jetbrains.datalore.plot.common.data.SeriesUtil
/**
* Computes kernel density estimate for 'n' values evenly distributed throughout the range of the input series.
*
* If size of the input series exceeds the 'fullScanMax' value, then the less accurate but more efficient computation replaces
* highly inefficient 'full scan' computation.
*/
class DensityStat(
private val trim: Boolean,
private val bandWidth: Double?,
private val bandWidthMethod: BandWidthMethod, // Used is `bandWidth` is not set.
private val adjust: Double,
private val kernel: Kernel,
private val n: Int,
private val fullScanMax: Int
) : BaseStat(DEF_MAPPING) {
init {
require(n <= MAX_N) { "The input n = $n > $MAX_N is too large!" }
}
override fun consumes(): List> {
return listOf(Aes.X, Aes.WEIGHT)
}
override fun apply(data: DataFrame, statCtx: StatContext, messageConsumer: (s: String) -> Unit): DataFrame {
if (!hasRequiredValues(data, Aes.X)) {
return withEmptyStatValues()
}
val xs: List
val weights: List
if (data.has(TransformVar.WEIGHT)) {
val filtered = SeriesUtil.filterFinite(
data.getNumeric(TransformVar.X),
data.getNumeric(TransformVar.WEIGHT)
)
val xsFiltered = filtered[0]
val weightsFiltered = filtered[1]
val (xsSorted, weightsSorted) = xsFiltered
.zip(weightsFiltered).sortedBy { it.first }
.unzip()
xs = xsSorted
weights = weightsSorted
} else {
xs = data.getNumeric(TransformVar.X)
.filterNotNull().filter { it.isFinite() }
.sorted()
weights = List(xs.size) { 1.0 }
}
if (xs.isEmpty()) return withEmptyStatValues()
val rangeX = if (trim) {
val xSummary = FiveNumberSummary(xs)
DoubleSpan(xSummary.min, xSummary.max)
} else {
statCtx.overallXRange() ?: DoubleSpan(-0.5, 0.5)
}
val statX = DensityStatUtil.createStepValues(rangeX, n)
val statDensity = ArrayList()
val statCount = ArrayList()
val statScaled = ArrayList()
val densityFunction = DensityStatUtil.densityFunction(
xs, weights,
bandWidth, bandWidthMethod, adjust, kernel, fullScanMax
)
val nTotal = weights.sum()
for (x in statX) {
val d = densityFunction(x)
statCount.add(d)
statDensity.add(d / nTotal)
}
val maxm = statCount.maxOrNull()!!
for (d in statCount) {
statScaled.add(d / maxm)
}
return DataFrame.Builder()
.putNumeric(Stats.X, statX)
.putNumeric(Stats.DENSITY, statDensity)
.putNumeric(Stats.COUNT, statCount)
.putNumeric(Stats.SCALED, statScaled)
.build()
}
enum class Kernel {
GAUSSIAN,
RECTANGULAR,
TRIANGULAR,
BIWEIGHT,
EPANECHNIKOV,
OPTCOSINE,
COSINE
}
enum class BandWidthMethod {
NRD0,
NRD
}
companion object {
const val DEF_TRIM = false
val DEF_KERNEL = Kernel.GAUSSIAN
const val DEF_ADJUST = 1.0
const val DEF_N = 512
val DEF_BW = NRD0
const val DEF_FULL_SCAN_MAX = 5000
const val MAX_N = 1024
private val DEF_MAPPING: Map, DataFrame.Variable> = mapOf(
Aes.X to Stats.X,
Aes.Y to Stats.DENSITY
)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy