Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2021. JetBrains s.r.o.
* Use of this source code is governed by the MIT license that can be found in the LICENSE file.
*/
package org.jetbrains.letsPlot.geom
import org.jetbrains.letsPlot.Geom.boxplot
import org.jetbrains.letsPlot.Stat
import org.jetbrains.letsPlot.intern.*
import org.jetbrains.letsPlot.intern.layer.PosOptions
import org.jetbrains.letsPlot.intern.layer.StatOptions
import org.jetbrains.letsPlot.intern.layer.WithColorOption
import org.jetbrains.letsPlot.intern.layer.WithFillOption
import org.jetbrains.letsPlot.intern.layer.geom.BoxplotAesthetics
import org.jetbrains.letsPlot.intern.layer.geom.BoxplotMapping
import org.jetbrains.letsPlot.intern.layer.geom.BoxplotParameters
import org.jetbrains.letsPlot.intern.layer.geom.PointMapping
import org.jetbrains.letsPlot.intern.layer.stat.BoxplotStatAesthetics
import org.jetbrains.letsPlot.intern.layer.stat.BoxplotStatParameters
import org.jetbrains.letsPlot.pos.positionDodge
import org.jetbrains.letsPlot.tooltips.TooltipOptions
/**
* Displays the distribution of data based on a five number summary ("minimum", first quartile (Q1),
* median, third quartile (Q3), and "maximum"), and "outlying" points individually.
*
* ## Examples
*
* - [distributions.ipynb](https://nbviewer.org/github/JetBrains/lets-plot-docs/blob/master/source/kotlin_examples/cookbook/distributions.ipynb)
*
* - [stat_boxplot_outlier.ipynb](https://nbviewer.org/github/JetBrains/lets-plot-docs/blob/master/source/kotlin_examples/cookbook/stat_boxplot_outlier.ipynb).
*
* @param data The data to be displayed. If null, the default, the data is inherited
* from the plot data as specified in the call to [letsPlot][org.jetbrains.letsPlot.letsPlot].
* @param stat default = `Stat.boxplot()`. The statistical transformation to use on the data for this layer.
* Supported transformations: `Stat.identity`, `Stat.bin()`, `Stat.count()`, etc. see [Stat][org.jetbrains.letsPlot.Stat].
* @param position default = `positionDodge()`. Position adjustment: `positionIdentity`,
* `positionStack()`, `positionDodge()`, etc. see [Position](https://lets-plot.org/kotlin/-lets--plot--kotlin/org.jetbrains.letsPlot.pos/).
* @param showLegend default = true.
* false - do not show legend for this layer.
* @param manualKey String or result of the call to the `layerKey()` function.
* The key to show in the manual legend. Specifies the text for the legend label or advanced settings using the `layerKey()` function.
* @param tooltips Result of the call to the `layerTooltips()` function.
* Specifies appearance, style and content.
* @param orientation Specifies the axis that the layer's stat and geom should run along.
* The default value (`null`) automatically determines the orientation based on the aesthetic mapping.
* If the automatic detection doesn't work, it can be set explicitly by specifying the "x" or "y" orientation.
* @param outlierAlpha Default transparency aesthetic for outliers.
* @param outlierColor Color aesthetic for outliers.
* @param outlierFill Fill aesthetic for outliers.
* @param outlierShape Shape aesthetic for outliers.
* For more info see: [aesthetics.html#point-shapes](https://lets-plot.org/kotlin/aesthetics.html#point-shapes).
* @param outlierSize Size aesthetic for outliers.
* @param outlierStroke Default width of the border for outliers.
* @param outlierAngle Rotation angle of the shape for outliers, in degrees.
* @param varWidth default = false. If false make a standard box plot.
* If true, boxes are drawn with widths proportional to the square-roots of the number of
* observations in the groups.
* @param fatten default = 1.0.
* A multiplicative factor applied to size of the middle bar.
* @param whiskerWidth default = 0.0.
* A multiplicative factor applied to the box width to draw horizontal segments on whiskers.
* @param coef default = 1.5.
* Length of the whiskers as multiple of IQR.
* @param colorBy default = "color" ("fill", "color", "paint_a", "paint_b", "paint_c").
* Defines the color aesthetic for the geometry.
* @param fillBy default = "fill" ("fill", "color", "paint_a", "paint_b", "paint_c").
* Defines the fill aesthetic for the geometry.
* @param lower Lower hinge, 25% quantile.
* @param middle Median, 50% quantile.
* @param upper Upper hinge, 75% quantile.
* @param ymin Lower whisker - the smallest observation greater than or equal to the lower hinge - 1.5 * IQR
* @param ymax Upper whisker - the largest observation less than or equal to the upper hinge + 1.5 * IQR
* @param width Width of boxplot. Typically ranges between 0 and 1. Values that are greater than 1 lead to overlapping of the boxes.
* @param alpha Transparency level of a layer.
* Understands numbers between 0 and 1.
* @param color Color of the geometry.
* For more info see: [aesthetics.html#color-and-fill](https://lets-plot.org/kotlin/aesthetics.html#color-and-fill).
* @param fill Fill color.
* For more info see: [aesthetics.html#color-and-fill](https://lets-plot.org/kotlin/aesthetics.html#color-and-fill).
* @param size Lines width.
* @param linetype Type of the line of border.
* Codes and names: 0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash",
* 5 = "longdash", 6 = "twodash".
* For more info see: [aesthetics.html#line-types](https://lets-plot.org/kotlin/aesthetics.html#line-types).
* @param mapping Set of aesthetic mappings.
* Aesthetic mappings describe the way that variables in the data are
* mapped to plot "aesthetics".
*/
fun geomBoxplot(
data: Map<*, *>? = null,
stat: StatOptions = Stat.boxplot(),
position: PosOptions = positionDodge(),
showLegend: Boolean = true,
manualKey: Any? = null,
tooltips: TooltipOptions? = null,
orientation: String? = null,
x: Number? = null,
y: Number? = null,
lower: Number? = null,
middle: Number? = null,
upper: Number? = null,
ymin: Number? = null,
ymax: Number? = null,
alpha: Number? = null,
color: Any? = null,
fill: Any? = null,
size: Number? = null,
stroke: Number? = null,
angle: Number? = null,
linetype: Any? = null,
shape: Any? = null,
width: Any? = null,
weight: Any? = null,
outlierAlpha: Number? = null,
outlierColor: Any? = null,
outlierFill: Any? = null,
outlierShape: Any? = null,
outlierSize: Number? = null,
outlierStroke: Number? = null,
outlierAngle: Number? = null,
fatten: Number? = null,
whiskerWidth: Number? = null,
varWidth: Boolean? = null,
@Suppress("SpellCheckingInspection")
coef: Number? = null,
colorBy: String? = null,
fillBy: String? = null,
mapping: BoxplotMapping .() -> Unit = {}
): FeatureList {
val layers = mutableListOf()
layers += geomBoxplotInternal(
data,
stat,
position,
showLegend,
manualKey,
tooltips,
orientation,
x, y, lower, middle, upper, ymin, ymax, alpha, color, fill, size, linetype, shape, angle, width, weight, fatten,
whiskerWidth, varWidth, coef,
colorBy, fillBy,
mapping
)
if (stat.kind == StatKind.BOXPLOT) {
val outlierFatten = 4.0
val boxplotMapping = BoxplotMapping().apply(mapping)
val pointMapping: PointMapping.() -> Unit = {
this.x = boxplotMapping.x
this.y = boxplotMapping.y
this.alpha = boxplotMapping.alpha
this.color = boxplotMapping.color
this.fill = boxplotMapping.fill
this.shape = boxplotMapping.shape
this.angle = boxplotMapping.angle
this.size = boxplotMapping.size
// stroke
this.group = boxplotMapping.group
this.paint_a = boxplotMapping.paint_a
this.paint_b = boxplotMapping.paint_b
this.paint_c = boxplotMapping.paint_c
}
layers += geomPoint(
data = data,
stat = Stat.boxplotOutlier(),
position = position,
showLegend = false,
manualKey = null,
sampling = null,
orientation = orientation,
x = x, y = y,
alpha = outlierAlpha,
color = outlierColor ?: color,
fill = outlierFill ?: fill,
shape = outlierShape ?: shape,
size = (outlierSize ?: size)?.let { it.toDouble() * outlierFatten },
stroke = outlierStroke ?: stroke,
angle = outlierAngle ?: angle,
colorBy = colorBy, fillBy = fillBy,
mapping = pointMapping
)
}
return FeatureList(layers)
}
@Suppress("ClassName")
private class geomBoxplotInternal(
data: Map<*, *>? = null,
stat: StatOptions = Stat.boxplot(),
position: PosOptions = positionDodge(),
showLegend: Boolean = true,
manualKey: Any? = null,
tooltips: TooltipOptions? = null,
orientation: String? = null,
override val x: Number? = null,
override val y: Number? = null,
override val lower: Number? = null,
override val middle: Number? = null,
override val upper: Number? = null,
override val ymin: Number? = null,
override val ymax: Number? = null,
override val alpha: Number? = null,
override val color: Any? = null,
override val fill: Any? = null,
override val size: Number? = null,
override val linetype: Any? = null,
override val shape: Any? = null,
override val angle: Number? = null,
override val width: Any? = null,
override val weight: Any? = null,
override val fatten: Number? = null,
override val whiskerWidth: Number? = null,
override val varWidth: Boolean? = null,
@Suppress("SpellCheckingInspection")
override val coef: Number? = null,
override val colorBy: String? = null,
override val fillBy: String? = null,
mapping: BoxplotMapping .() -> Unit = {}
) : BoxplotAesthetics,
BoxplotParameters,
BoxplotStatAesthetics,
BoxplotStatParameters,
WithColorOption,
WithFillOption,
Layer(
mapping = BoxplotMapping().apply(mapping).seal(),
data = data,
geom = boxplot(),
stat = stat,
position = position,
showLegend = showLegend,
manualKey = manualKey,
sampling = null,
tooltips = tooltips,
orientation = orientation
) {
override fun seal(): Options {
return super.seal() +
super.seal() +
super.seal() +
super.seal() +
super.seal() +
super.seal()
}
}