All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jflac.FLACEncoder Maven / Gradle / Ivy

The newest version!
package org.jflac;

/**
 *  libFLAC - Free Lossless Audio Codec library
 * Copyright (C) 2000,2001,2002,2003  Josh Coalson
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA  02111-1307, USA.
 */

import org.jflac.frame.EntropyPartitionedRiceContents;
import org.jflac.io.BitOutputStream;

public class FLACEncoder {
    
    private static final int ENCODER_IN_MAGIC = 0;
    private static final int ENCODER_IN_METADATA = 1;
    private static final int ENCODER_IN_AUDIO = 2;
    
    // stream encoder states
    
    private static final int STREAM_ENCODER_OK = 0;
    /**< The encoder is in the normal OK state. */
    
    private static final int STREAM_ENCODER_VERIFY_DECODER_ERROR = 1;
    /**< An error occurred in the underlying verify stream decoder;
     * check stream_encoder_get_verify_decoder_state().
     */
    
    private static final int STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA = 2;
    /**< The verify decoder detected a mismatch between the original
     * audio signal and the decoded audio signal.
     */
    
    private static final int STREAM_ENCODER_INVALID_CALLBACK = 3;
    /**< The encoder was initialized before setting all the required callbacks. */
    
    private static final int STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS = 4;
    /**< The encoder has an invalid setting for number of channels. */
    
    private static final int STREAM_ENCODER_INVALID_BITS_PER_SAMPLE = 5;
    /**< The encoder has an invalid setting for bits-per-sample.
     * FLAC supports 4-32 bps but the reference encoder currently supports
     * only up to 24 bps.
     */
    
    private static final int STREAM_ENCODER_INVALID_SAMPLE_RATE = 6;
    /**< The encoder has an invalid setting for the input sample rate. */
    
    private static final int STREAM_ENCODER_INVALID_BLOCK_SIZE = 7;
    /**< The encoder has an invalid setting for the block size. */
    
    private static final int STREAM_ENCODER_INVALID_MAX_LPC_ORDER = 8;
    /**< The encoder has an invalid setting for the maximum LPC order. */
    
    private static final int STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION = 9;
    /**< The encoder has an invalid setting for the precision of the quantized linear predictor coefficients. */
    
    private static final int STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH = 10;
    /**< Mid/side coding was specified but the number of channels is not equal to 2. */
    
    private static final int STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH = 11;
    /**< Deprecated. */
    
    private static final int STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE = 12;
    /**< Loose mid/side coding was specified but mid/side coding was not. */
    
    private static final int STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER = 13;
    /**< The specified block size is less than the maximum LPC order. */
    
    private static final int STREAM_ENCODER_NOT_STREAMABLE = 14;
    /**< The encoder is bound to the "streamable subset" but other settings violate it. */
    
    private static final int STREAM_ENCODER_FRAMING_ERROR = 15;
    /**< An error occurred while writing the stream; usually, the write_callback returned an error. */
    
    private static final int STREAM_ENCODER_INVALID_METADATA = 16;
    /**< The metadata input to the encoder is invalid, in one of the following ways:
     * - stream_encoder_set_metadata() was called with a null pointer but a block count > 0
     * - One of the metadata blocks contains an undefined type
     * - It contains an illegal CUESHEET as checked by format_cuesheet_is_legal()
     * - It contains an illegal SEEKTABLE as checked by format_seektable_is_legal()
     * - It contains more than one SEEKTABLE block or more than one VORBIS_COMMENT block
     */
    
    private static final int STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING = 17;
    /**< An error occurred while writing the stream; usually, the write_callback returned an error. */
    
    private static final int STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING = 18;
    /**< The write_callback returned an error. */
    
    private static final int STREAM_ENCODER_MEMORY_ALLOCATION_ERROR = 19;
    /**< Memory allocation failed. */
    
    private static final int STREAM_ENCODER_ALREADY_INITIALIZED = 20;
    /**< stream_encoder_init() was called when the encoder was
     * already initialized, usually because
     * stream_encoder_finish() was not called.
     */
    
    private static final int STREAM_ENCODER_UNINITIALIZED = 21;
    /**< The encoder is in the uninitialized state. */
    
    /***********************************************************************
     *
     * Private class data
     *
     ***********************************************************************/
    
    boolean precompute_partition_sums;  /* our initial guess as to whether precomputing the partitions sums will be a speed improvement */

    boolean disable_fixed_subframes;
    boolean disable_verbatim_subframes;
    
    // protected
    int state;
    boolean verify;
    boolean streamable_subset;
    boolean do_mid_side_stereo;
    boolean loose_mid_side_stereo;
    int channels;
    int bits_per_sample;
    int sample_rate;
    int blocksize;
    int max_lpc_order;
    int qlp_coeff_precision;
    boolean do_qlp_coeff_prec_search;
    boolean do_exhaustive_model_search;
    boolean do_escape_coding;
    int min_residual_partition_order;
    int max_residual_partition_order;
    int rice_parameter_search_dist;
    long total_samples_estimate;
    //StreamMetadata **metadata;
    int num_metadata_blocks;
    
    // private
    
    /***********************************************************************
     *
     * Public static class data
     *
     ***********************************************************************/
    
    private static final String StreamEncoderStateString[] = new String[] {
            "STREAM_ENCODER_OK",
            "STREAM_ENCODER_VERIFY_DECODER_ERROR",
            "STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA",
            "STREAM_ENCODER_INVALID_CALLBACK",
            "STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS",
            "STREAM_ENCODER_INVALID_BITS_PER_SAMPLE",
            "STREAM_ENCODER_INVALID_SAMPLE_RATE",
            "STREAM_ENCODER_INVALID_BLOCK_SIZE",
            "STREAM_ENCODER_INVALID_MAX_LPC_ORDER",
            "STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION",
            "STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH",
            "STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH",
            "STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE",
            "STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
            "STREAM_ENCODER_NOT_STREAMABLE",
            "STREAM_ENCODER_FRAMING_ERROR",
            "STREAM_ENCODER_INVALID_METADATA",
            "STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING",
            "STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING",
            "STREAM_ENCODER_MEMORY_ALLOCATION_ERROR",
            "STREAM_ENCODER_ALREADY_INITIALIZED",
            "STREAM_ENCODER_UNINITIALIZED"
    };
    
    private static final String StreamEncoderWriteStatusString[] = new String[] {
            "STREAM_ENCODER_WRITE_STATUS_OK",
            "STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR"
    };
    
    /***********************************************************************
     *
     * Class constructor/destructor
     *
     */
    public FLACEncoder() {
        setDefaults();
        
        /*
         for (int i = 0; i < Constants.MAX_CHANNELS; i++) {
         encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0];
         encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1];
         }
         for(i = 0; i < 2; i++) {
         encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0];
         encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1];
         }
         for(i = 0; i < Constants.MAX_CHANNELS; i++) {
         encoder->private_->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->partitioned_rice_contents_workspace[i][0];
         encoder->private_->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->partitioned_rice_contents_workspace[i][1];
         }
         for(i = 0; i < 2; i++) {
         encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0];
         encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1];
         }
         
         for(i = 0; i < Constants.MAX_CHANNELS; i++) {
         format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][0]);
         format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][1]);
         }
         for(i = 0; i < 2; i++) {
         format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]);
         format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]);
         }
         for(i = 0; i < 2; i++)
         format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_extra[i]);
         */
        
        state = STREAM_ENCODER_UNINITIALIZED;
    }
    
    /*
     void stream_encoder_delete(StreamEncoder *encoder)
     {
     unsigned i;
     
     ASSERT(0 != encoder);
     ASSERT(0 != encoder->protected_);
     ASSERT(0 != encoder->private_);
     ASSERT(0 != encoder->private_->frame);
     
     encoder->private_->is_being_deleted = true;
     
     stream_encoder_finish(encoder);
     
     if(0 != encoder->private_->verify.decoder)
     stream_decoder_delete(encoder->private_->verify.decoder);
     
     for(i = 0; i < Constants.MAX_CHANNELS; i++) {
     format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][0]);
     format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][1]);
     }
     for(i = 0; i < 2; i++) {
     format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]);
     format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]);
     }
     for(i = 0; i < 2; i++)
     format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_extra[i]);
     
     bitbuffer_delete(encoder->private_->frame);
     free(encoder->private_);
     free(encoder->protected_);
     free(encoder);
     }
     */
    
    /***********************************************************************
     *
     * Public class methods
     *
     ***********************************************************************/
    
    /*
     StreamEncoderState stream_encoder_init(StreamEncoder *encoder)
     {
     unsigned i;
     boolean metadata_has_seektable, metadata_has_vorbis_comment;
     
     ASSERT(0 != encoder);
     
     if(encoder->protected_->state != STREAM_ENCODER_UNINITIALIZED)
     return encoder->protected_->state = STREAM_ENCODER_ALREADY_INITIALIZED;
     
     encoder->protected_->state = STREAM_ENCODER_OK;
     
     if(0 == encoder->private_->write_callback || 0 == encoder->private_->metadata_callback)
     return encoder->protected_->state = STREAM_ENCODER_INVALID_CALLBACK;
     
     if(encoder->protected_->channels == 0 || encoder->protected_->channels > Constants.MAX_CHANNELS)
     return encoder->protected_->state = STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS;
     
     if(encoder->protected_->do_mid_side_stereo && encoder->protected_->channels != 2)
     return encoder->protected_->state = STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH;
     
     if(encoder->protected_->loose_mid_side_stereo && !encoder->protected_->do_mid_side_stereo)
     return encoder->protected_->state = STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE;
     
     if(encoder->protected_->bits_per_sample >= 32)
     encoder->protected_->do_mid_side_stereo = false; // since we do 32-bit math, the side channel would have 33 bps and overflow
     
     if(encoder->protected_->bits_per_sample < MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > REFERENCE_CODEC_MAX_BITS_PER_SAMPLE)
     return encoder->protected_->state = STREAM_ENCODER_INVALID_BITS_PER_SAMPLE;
     
     if(!format_sample_rate_is_valid(encoder->protected_->sample_rate))
     return encoder->protected_->state = STREAM_ENCODER_INVALID_SAMPLE_RATE;
     
     if(encoder->protected_->blocksize < MIN_BLOCK_SIZE || encoder->protected_->blocksize > MAX_BLOCK_SIZE)
     return encoder->protected_->state = STREAM_ENCODER_INVALID_BLOCK_SIZE;
     
     if(encoder->protected_->max_lpc_order > MAX_LPC_ORDER)
     return encoder->protected_->state = STREAM_ENCODER_INVALID_MAX_LPC_ORDER;
     
     if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order)
     return encoder->protected_->state = STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
     
     if(encoder->protected_->qlp_coeff_precision == 0) {
     if(encoder->protected_->bits_per_sample < 16) {
     // @@@ need some data about how to set this here w.r.t. blocksize and sample rate
      // @@@ until then we'll make a guess
       encoder->protected_->qlp_coeff_precision = max(MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2);
       }
       else if(encoder->protected_->bits_per_sample == 16) {
       if(encoder->protected_->blocksize <= 192)
       encoder->protected_->qlp_coeff_precision = 7;
       else if(encoder->protected_->blocksize <= 384)
       encoder->protected_->qlp_coeff_precision = 8;
       else if(encoder->protected_->blocksize <= 576)
       encoder->protected_->qlp_coeff_precision = 9;
       else if(encoder->protected_->blocksize <= 1152)
       encoder->protected_->qlp_coeff_precision = 10;
       else if(encoder->protected_->blocksize <= 2304)
       encoder->protected_->qlp_coeff_precision = 11;
       else if(encoder->protected_->blocksize <= 4608)
       encoder->protected_->qlp_coeff_precision = 12;
       else
       encoder->protected_->qlp_coeff_precision = 13;
       }
       else {
       if(encoder->protected_->blocksize <= 384)
       encoder->protected_->qlp_coeff_precision = MAX_QLP_COEFF_PRECISION-2;
       else if(encoder->protected_->blocksize <= 1152)
       encoder->protected_->qlp_coeff_precision = MAX_QLP_COEFF_PRECISION-1;
       else
       encoder->protected_->qlp_coeff_precision = MAX_QLP_COEFF_PRECISION;
       }
       ASSERT(encoder->protected_->qlp_coeff_precision <= MAX_QLP_COEFF_PRECISION);
       }
       else if(encoder->protected_->qlp_coeff_precision < MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > MAX_QLP_COEFF_PRECISION)
       return encoder->protected_->state = STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION;
       
       if(encoder->protected_->streamable_subset) {
       if(
       encoder->protected_->blocksize != 192 &&
       encoder->protected_->blocksize != 576 &&
       encoder->protected_->blocksize != 1152 &&
       encoder->protected_->blocksize != 2304 &&
       encoder->protected_->blocksize != 4608 &&
       encoder->protected_->blocksize != 256 &&
       encoder->protected_->blocksize != 512 &&
       encoder->protected_->blocksize != 1024 &&
       encoder->protected_->blocksize != 2048 &&
       encoder->protected_->blocksize != 4096 &&
       encoder->protected_->blocksize != 8192 &&
       encoder->protected_->blocksize != 16384
       )
       return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
       if(
       encoder->protected_->sample_rate != 8000 &&
       encoder->protected_->sample_rate != 16000 &&
       encoder->protected_->sample_rate != 22050 &&
       encoder->protected_->sample_rate != 24000 &&
       encoder->protected_->sample_rate != 32000 &&
       encoder->protected_->sample_rate != 44100 &&
       encoder->protected_->sample_rate != 48000 &&
       encoder->protected_->sample_rate != 96000
       )
       return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
       if(
       encoder->protected_->bits_per_sample != 8 &&
       encoder->protected_->bits_per_sample != 12 &&
       encoder->protected_->bits_per_sample != 16 &&
       encoder->protected_->bits_per_sample != 20 &&
       encoder->protected_->bits_per_sample != 24
       )
       return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
       if(encoder->protected_->max_residual_partition_order > SUBSET_MAX_RICE_PARTITION_ORDER)
       return encoder->protected_->state = STREAM_ENCODER_NOT_STREAMABLE;
       }
       
       if(encoder->protected_->max_residual_partition_order >= (1u << ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
       encoder->protected_->max_residual_partition_order = (1u << ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
       if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order)
       encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order;
       
       // validate metadata
        if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0)
        return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
        metadata_has_seektable = false;
        metadata_has_vorbis_comment = false;
        for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
        if(encoder->protected_->metadata[i]->type == METADATA_TYPE_STREAMINFO)
        return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
        else if(encoder->protected_->metadata[i]->type == METADATA_TYPE_SEEKTABLE) {
        if(metadata_has_seektable) // only one is allowed
        return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
        metadata_has_seektable = true;
        if(!format_seektable_is_legal(&encoder->protected_->metadata[i]->data.seek_table))
        return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
        }
        else if(encoder->protected_->metadata[i]->type == METADATA_TYPE_VORBIS_COMMENT) {
        if(metadata_has_vorbis_comment) // only one is allowed 
        return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
        metadata_has_vorbis_comment = true;
        }
        else if(encoder->protected_->metadata[i]->type == METADATA_TYPE_CUESHEET) {
        if(!format_cuesheet_is_legal(&encoder->protected_->metadata[i]->data.cue_sheet, encoder->protected_->metadata[i]->data.cue_sheet.is_cd, 0))
        return encoder->protected_->state = STREAM_ENCODER_INVALID_METADATA;
        }
        }
        
        encoder->private_->input_capacity = 0;
        for(i = 0; i < encoder->protected_->channels; i++) {
        encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0;
        encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0;
        }
        for(i = 0; i < 2; i++) {
        encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0;
        encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0;
        }
        for(i = 0; i < encoder->protected_->channels; i++) {
        encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0;
        encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0;
        encoder->private_->best_subframe[i] = 0;
        }
        for(i = 0; i < 2; i++) {
        encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0;
        encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0;
        encoder->private_->best_subframe_mid_side[i] = 0;
        }
        encoder->private_->abs_residual_unaligned = encoder->private_->abs_residual = 0;
        encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0;
        encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0;
        encoder->private_->loose_mid_side_stereo_frames_exact = (double)encoder->protected_->sample_rate * 0.4 / (double)encoder->protected_->blocksize;
        encoder->private_->loose_mid_side_stereo_frames = (unsigned)(encoder->private_->loose_mid_side_stereo_frames_exact + 0.5);
        if(encoder->private_->loose_mid_side_stereo_frames == 0)
        encoder->private_->loose_mid_side_stereo_frames = 1;
        encoder->private_->loose_mid_side_stereo_frame_count = 0;
        encoder->private_->current_sample_number = 0;
        encoder->private_->current_frame_number = 0;
        
        encoder->private_->use_wide_by_block = (encoder->protected_->bits_per_sample + bitmath_ilog2(encoder->protected_->blocksize)+1 > 30);
        encoder->private_->use_wide_by_order = (encoder->protected_->bits_per_sample + bitmath_ilog2(max(encoder->protected_->max_lpc_order, MAX_FIXED_ORDER))+1 > 30); //@@@ need to use this?
        encoder->private_->use_wide_by_partition = (false); //@@@ need to set this 
        
        // get the CPU info and set the function pointers
         cpu_info(&encoder->private_->cpuinfo);
         // first default to the non-asm routines
          encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation;
          encoder->private_->local_fixed_compute_best_predictor = fixed_compute_best_predictor;
          encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = lpc_compute_residual_from_qlp_coefficients;
          encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = lpc_compute_residual_from_qlp_coefficients_wide;
          encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = lpc_compute_residual_from_qlp_coefficients;
          // now override with asm where appropriate 
           #ifndef NO_ASM
           if(encoder->private_->cpuinfo.use_asm) {
           #ifdef CPU_IA32
           ASSERT(encoder->private_->cpuinfo.type == CPUINFO_TYPE_IA32);
           #ifdef HAS_NASM
           #ifdef SSE_OS
           if(encoder->private_->cpuinfo.data.ia32.sse) {
           if(encoder->protected_->max_lpc_order < 4)
           encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_sse_lag_4;
           else if(encoder->protected_->max_lpc_order < 8)
           encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_sse_lag_8;
           else if(encoder->protected_->max_lpc_order < 12)
           encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_sse_lag_12;
           else
           encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32;
           }
           else
           #endif
           if(encoder->private_->cpuinfo.data.ia32._3dnow)
           encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32_3dnow;
           else
           encoder->private_->local_lpc_compute_autocorrelation = lpc_compute_autocorrelation_asm_ia32;
           if(encoder->private_->cpuinfo.data.ia32.mmx && encoder->private_->cpuinfo.data.ia32.cmov)
           encoder->private_->local_fixed_compute_best_predictor = fixed_compute_best_predictor_asm_ia32_mmx_cmov;
           if(encoder->private_->cpuinfo.data.ia32.mmx) {
           encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = lpc_compute_residual_from_qlp_coefficients_asm_ia32;
           encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx;
           }
           else {
           encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = lpc_compute_residual_from_qlp_coefficients_asm_ia32;
           encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = lpc_compute_residual_from_qlp_coefficients_asm_ia32;
           }
           #endif
           #endif
           }
           #endif
           // finally override based on wide-ness if necessary 
            if(encoder->private_->use_wide_by_block) {
            encoder->private_->local_fixed_compute_best_predictor = fixed_compute_best_predictor_wide;
            }
            
            // we require precompute_partition_sums if do_escape_coding because of their intertwined nature 
             encoder->private_->precompute_partition_sums = (encoder->protected_->max_residual_partition_order > encoder->protected_->min_residual_partition_order) || encoder->protected_->do_escape_coding;
             
             if(!resize_buffers_(encoder->protected_->blocksize)) {
             // the above function sets the state for us in case of an error 
              return encoder->protected_->state;
              }
              
              if(!bitbuffer_init(encoder->private_->frame))
              return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
              
              // Set up the verify stuff if necessary
               if(encoder->protected_->verify) {
               // First, set up the fifo which will hold the original signal to compare against
                encoder->private_->verify.input_fifo.size = encoder->protected_->blocksize;
                for(i = 0; i < encoder->protected_->channels; i++) {
                if(0 == (encoder->private_->verify.input_fifo.data[i] = (int*)malloc(sizeof(int) * encoder->private_->verify.input_fifo.size)))
                return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
                }
                encoder->private_->verify.input_fifo.tail = 0;
                
                // Now set up a stream decoder for verification
                 encoder->private_->verify.decoder = stream_decoder_new();
                 if(0 == encoder->private_->verify.decoder)
                 return encoder->protected_->state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
                 
                 stream_decoder_set_read_callback(encoder->private_->verify.decoder, verify_read_callback_);
                 stream_decoder_set_write_callback(encoder->private_->verify.decoder, verify_write_callback_);
                 stream_decoder_set_metadata_callback(encoder->private_->verify.decoder, verify_metadata_callback_);
                 stream_decoder_set_error_callback(encoder->private_->verify.decoder, verify_error_callback_);
                 stream_decoder_set_client_data(encoder->private_->verify.decoder, encoder);
                 if(stream_decoder_init(encoder->private_->verify.decoder) != STREAM_DECODER_SEARCH_FOR_METADATA)
                 return encoder->protected_->state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
                 }
                 encoder->private_->verify.error_stats.absolute_sample = 0;
                 encoder->private_->verify.error_stats.frame_number = 0;
                 encoder->private_->verify.error_stats.channel = 0;
                 encoder->private_->verify.error_stats.sample = 0;
                 encoder->private_->verify.error_stats.expected = 0;
                 encoder->private_->verify.error_stats.got = 0;
                 
                 // write the stream header
                  if(encoder->protected_->verify)
                  encoder->private_->verify.state_hint = ENCODER_IN_MAGIC;
                  if(!bitbuffer_write_raw_uint32(encoder->private_->frame, STREAM_SYNC, STREAM_SYNC_LEN))
                  return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
                  if(!write_bitbuffer_(0)) {
                  // the above function sets the state for us in case of an error
                   return encoder->protected_->state;
                   }
                   
                   //write the STREAMINFO metadata block
                    if(encoder->protected_->verify)
                    encoder->private_->verify.state_hint = ENCODER_IN_METADATA;
                    encoder->private_->metadata.type = METADATA_TYPE_STREAMINFO;
                    encoder->private_->metadata.is_last = false; // we will have at a minimum a VORBIS_COMMENT afterwards
                    encoder->private_->metadata.length = STREAM_METADATA_STREAMINFO_LENGTH;
                    encoder->private_->metadata.data.stream_info.min_blocksize = encoder->protected_->blocksize; // this encoder uses the same blocksize for the whole stream 
                    encoder->private_->metadata.data.stream_info.max_blocksize = encoder->protected_->blocksize;
                    encoder->private_->metadata.data.stream_info.min_framesize = 0; // we don't know this yet; have to fill it in later 
                    encoder->private_->metadata.data.stream_info.max_framesize = 0; // we don't know this yet; have to fill it in later 
                    encoder->private_->metadata.data.stream_info.sample_rate = encoder->protected_->sample_rate;
                    encoder->private_->metadata.data.stream_info.channels = encoder->protected_->channels;
                    encoder->private_->metadata.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample;
                    encoder->private_->metadata.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; // we will replace this later with the real total
                    memset(encoder->private_->metadata.data.stream_info.md5sum, 0, 16); // we don't know this yet; have to fill it in later 
                    MD5Init(&encoder->private_->md5context);
                    if(!bitbuffer_clear(encoder->private_->frame))
                    return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
                    if(!add_metadata_block(&encoder->private_->metadata, encoder->private_->frame))
                    return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
                    if(!write_bitbuffer_(0)) {
                    // the above function sets the state for us in case of an error
                     return encoder->protected_->state;
                     }
                     
                     // Now that the STREAMINFO block is written, we can init this to an absurdly-high value...
                      encoder->private_->metadata.data.stream_info.min_framesize = (1u << STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1;
                      // ... and clear this to 0 
                       encoder->private_->metadata.data.stream_info.total_samples = 0;
                       
                       // Check to see if the supplied metadata contains a VORBIS_COMMENT;
                        // if not, we will write an empty one (add_metadata_block()
                         // automatically supplies the vendor string).
                          if(!metadata_has_vorbis_comment) {
                          StreamMetadata vorbis_comment;
                          vorbis_comment.type = METADATA_TYPE_VORBIS_COMMENT;
                          vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0);
                          vorbis_comment.length = 4 + 4; // MAGIC NUMBER 
                          vorbis_comment.data.vorbis_comment.vendor_string.length = 0;
                          vorbis_comment.data.vorbis_comment.vendor_string.entry = 0;
                          vorbis_comment.data.vorbis_comment.num_comments = 0;
                          vorbis_comment.data.vorbis_comment.comments = 0;
                          if(!bitbuffer_clear(encoder->private_->frame))
                          return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
                          if(!add_metadata_block(&vorbis_comment, encoder->private_->frame))
                          return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
                          if(!write_bitbuffer_(0)) {
                          // the above function sets the state for us in case of an error 
                           return encoder->protected_->state;
                           }
                           }
                           
                           // write the user's metadata blocks 
                            for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
                            encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1);
                            if(!bitbuffer_clear(encoder->private_->frame))
                            return encoder->protected_->state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
                            if(!add_metadata_block(encoder->protected_->metadata[i], encoder->private_->frame))
                            return encoder->protected_->state = STREAM_ENCODER_FRAMING_ERROR;
                            if(!write_bitbuffer_(0)) {
                            // the above function sets the state for us in case of an error
                             return encoder->protected_->state;
                             }
                             }
                             
                             if(encoder->protected_->verify)
                             encoder->private_->verify.state_hint = ENCODER_IN_AUDIO;
                             
                             return encoder->protected_->state;
                             }
                             */
    
    /*
     void stream_encoder_finish(StreamEncoder *encoder)
     {
     ASSERT(0 != encoder);
     
     if(encoder->protected_->state == STREAM_ENCODER_UNINITIALIZED)
     return;
     
     if(encoder->protected_->state == STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) {
     if(encoder->private_->current_sample_number != 0) {
     encoder->protected_->blocksize = encoder->private_->current_sample_number;
     process_frame_(true); // true => is last frame
     }
     }
     
     MD5Final(encoder->private_->metadata.data.stream_info.md5sum, &encoder->private_->md5context);
     
     if(encoder->protected_->state == STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) {
     encoder->private_->metadata_callback(&encoder->private_->metadata, encoder->private_->client_data);
     }
     
     if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder)
     stream_decoder_finish(encoder->private_->verify.decoder);
     
     free_(encoder);
     set_defaults_(encoder);
     
     encoder->protected_->state = STREAM_ENCODER_UNINITIALIZED;
     }
     */
    
    public void setVerify(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        verify = value;
    }
    
    public void setStreamableSubset(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        streamable_subset = value;
    }
    
    public void setDoMidSideStereo(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        do_mid_side_stereo = value;
    }
    
    public void setLooseMidSideStereo(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        loose_mid_side_stereo = value;
    }
    
    public void setChannels(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        channels = value;
    }
    
    public void setBitsPerSample(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        bits_per_sample = value;
    }
    
    public void setSampleRate(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        sample_rate = value;
    }
    
    public void setBlocksize(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        blocksize = value;
    }
    
    public void setMaxLPCOrder(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        max_lpc_order = value;
    }
    
    public void setQLPCoeffPrecision(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        qlp_coeff_precision = value;
    }
    
    public void setDoQLPCoeffPrecSearch(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        do_qlp_coeff_prec_search = value;
    }
    
    public void setDoExhaustiveModelSearch(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        do_exhaustive_model_search = value;
    }
    
    public void setMinResidualPartitionOrder(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        min_residual_partition_order = value;
    }
    
    public void setMaxResidualPartitionOrder(int value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        max_residual_partition_order = value;
    }
    
    public void setTotalSamplesEstimate(long value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        total_samples_estimate = value;
    }
    
    /*
     public void set_metadata(StreamMetadata **metadata, int num_blocks) {
     if (state != STREAM_ENCODER_UNINITIALIZED) return;
     metadata = metadata;
     num_metadata_blocks = num_blocks;
     }
     */
    
    /*
     boolean set_write_callback(StreamEncoderWriteCallback value)
     {
     ASSERT(0 != encoder);
     ASSERT(0 != value);
     if (state != STREAM_ENCODER_UNINITIALIZED)
     return false;
     encoder->private_->write_callback = value;
     return true;
     }
     */
    
    /*
     boolean set_metadata_callback(StreamEncoderMetadataCallback value)
     {
     ASSERT(0 != encoder);
     ASSERT(0 != value);
     if (state != STREAM_ENCODER_UNINITIALIZED)
     return false;
     encoder->private_->metadata_callback = value;
     return true;
     }
     */
    
    /*
     boolean set_client_data(void *value)
     {
     ASSERT(0 != encoder);
     if (state != STREAM_ENCODER_UNINITIALIZED)
     return false;
     encoder->private_->client_data = value;
     return true;
     }
     */
    
    /*
     * These three functions are not static, but not publically exposed in
     * include/FLAC/ either.  They are used by the test suite.
     */
    public void disableConstantSubframes(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
    }
    
    public void disableFixedSubframes(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        disable_fixed_subframes = value;
    }
    
    public void disableVerbatimSubframes(boolean value) {
        if (state != STREAM_ENCODER_UNINITIALIZED) return;
        disable_verbatim_subframes = value;
    }
    
    public int getState() {
        return state;
    }
    
    /*
     public int getVerifyDecoderState() {
     if (verify)
     return stream_decoder_get_state(verify.decoder);
     else
     return STREAM_DECODER_UNINITIALIZED;
     }
     */
    
    /*
     char *get_resolved_state_string(StreamEncoder *encoder)
     {
     if (state != STREAM_ENCODER_VERIFY_DECODER_ERROR)
     return StreamEncoderStateString[state];
     else
     return StreamDecoderStateString[stream_decoder_get_state(verify.decoder)];
     }
     */
    
    /*
     void get_verify_decoder_error_stats(StreamEncoder *encoder, uint64 *absolute_sample, unsigned *frame_number, unsigned *channel, unsigned *sample, int *expected, int *got)
     {
     ASSERT(0 != encoder);
     if (0 != absolute_sample)
     *absolute_sample = verify.error_stats.absolute_sample;
     if (0 != frame_number)
     *frame_number = verify.error_stats.frame_number;
     if (0 != channel)
     *channel = verify.error_stats.channel;
     if (0 != sample)
     *sample = verify.error_stats.sample;
     if (0 != expected)
     *expected = verify.error_stats.expected;
     if (0 != got)
     *got = verify.error_stats.got;
     }
     */
    
    public boolean getVerify() {
        return verify;
    }
    
    public boolean getStreamableSubset() {
        return streamable_subset;
    }
    
    public boolean getDoMidSideStereo() {
        return do_mid_side_stereo;
    }
    
    public boolean getLooseMidSideStereo() {
        return loose_mid_side_stereo;
    }
    
    public int getChannels() {
        return channels;
    }
    
    public int getBitsPerSample() {
        return bits_per_sample;
    }
    
    public int getSampleRate() {
        return sample_rate;
    }
    
    public int getBlocksize() {
        return blocksize;
    }
    
    public int getMaxLPCOrder() {
        return max_lpc_order;
    }
    
    public int getQLPCoeffPrecision() {
        return qlp_coeff_precision;
    }
    
    public boolean getDoQLPCoeffPrecSearch() {
        return do_qlp_coeff_prec_search;
    }
    
    public boolean getDoEscapeCoding() {
        return do_escape_coding;
    }
    
    public boolean getDoExhaustiveModelSearch() {
        return do_exhaustive_model_search;
    }
    
    public int getMinResidualPartitionOrder() {
        return min_residual_partition_order;
    }
    
    public int getMaxResidualPartitionOrder() {
        return max_residual_partition_order;
    }
    
    public int getRiceParameterSearchDist() {
        return rice_parameter_search_dist;
    }
    
    public long getTotalSamplesEstimate() {
        return total_samples_estimate;
    }
    
    /*
     public boolean process(int * buffer[], unsigned samples)
     {
     unsigned i, j, channel;
     int x, mid, side;
     int channels = channels, blocksize = blocksize;
     
     ASSERT(0 != encoder);
     ASSERT(state == STREAM_ENCODER_OK);
     
     j = 0;
     if (do_mid_side_stereo && channels == 2) {
     do {
     if (verify)
     append_to_verify_fifo_(&verify.input_fifo, buffer, j, channels, min(blocksize-current_sample_number, samples-j));
     
     for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
     x = mid = side = buffer[0][j];
     integer_signal[0][i] = x;
     real_signal[0][i] = (double)x;
     x = buffer[1][j];
     integer_signal[1][i] = x;
     real_signal[1][i] = (double)x;
     mid += x;
     side -= x;
     mid >>= 1; // NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! 
     integer_signal_mid_side[1][i] = side;
     integer_signal_mid_side[0][i] = mid;
     real_signal_mid_side[1][i] = (double)side;
     real_signal_mid_side[0][i] = (double)mid;
     current_sample_number++;
     }
     if (i == blocksize) {
     if (!process_frame_(false)) // false => not last frame 
     return false;
     }
     } while(j < samples);
     }
     else {
     do {
     if (verify)
     append_to_verify_fifo_(&verify.input_fifo, buffer, j, channels, min(blocksize-current_sample_number, samples-j));
     
     for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
     for(channel = 0; channel < channels; channel++) {
     x = buffer[channel][j];
     integer_signal[channel][i] = x;
     real_signal[channel][i] = (double)x;
     }
     current_sample_number++;
     }
     if (i == blocksize) {
     if (!process_frame_(false)) // false => not last frame
     return false;
     }
     } while(j < samples);
     }
     
     return true;
     }
     */
    
    /*
     public boolean process_interleaved(int[] buffer, int samples) {
     int i, j, k, channel;
     int x, mid, side;
     int channels = channels, blocksize = blocksize;
     
     j = k = 0;
     if (do_mid_side_stereo && channels == 2) {
     do {
     if (verify)
     appendToVerifyFifoInterleaved(verifyData.input_fifo, buffer, j, channels, Math.min(blocksize-current_sample_number, samples-j));
     
     for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
     x = mid = side = buffer[k++];
     integer_signal[0][i] = x;
     real_signal[0][i] = (double)x;
     x = buffer[k++];
     integer_signal[1][i] = x;
     real_signal[1][i] = (double)x;
     mid += x;
     side -= x;
     mid >>= 1; // NOTE: not the same as 'mid = (left + right) / 2' !
     integer_signal_mid_side[1][i] = side;
     integer_signal_mid_side[0][i] = mid;
     real_signal_mid_side[1][i] = (double)side;
     real_signal_mid_side[0][i] = (double)mid;
     current_sample_number++;
     }
     if (i == blocksize) {
     if (!processFrame(false)) // false => not last frame
     return false;
     }
     } while(j < samples);
     }
     else {
     do {
     if (verify)
     appendToVerifyFifoInterleaved(verifyData.input_fifo, buffer, j, channels, Math.min(blocksize-current_sample_number, samples-j));
     
     for(i = current_sample_number; i < blocksize && j < samples; i++, j++) {
     for(channel = 0; channel < channels; channel++) {
     x = buffer[k++];
     integer_signal[channel][i] = x;
     real_signal[channel][i] = (double)x;
     }
     current_sample_number++;
     }
     if (i == blocksize) {
     if (!processFrame(false)) // false => not last frame
     return false;
     }
     } while(j < samples);
     }
     
     return true;
     }
     */
    
    /***********************************************************************
     *
     * Private class methods
     *
     ***********************************************************************/
    
    public void setDefaults() {
        
        verify = false;
        streamable_subset = true;
        do_mid_side_stereo = false;
        loose_mid_side_stereo = false;
        channels = 2;
        bits_per_sample = 16;
        sample_rate = 44100;
        blocksize = 1152;
        max_lpc_order = 0;
        qlp_coeff_precision = 0;
        do_qlp_coeff_prec_search = false;
        do_exhaustive_model_search = false;
        do_escape_coding = false;
        min_residual_partition_order = 0;
        max_residual_partition_order = 0;
        rice_parameter_search_dist = 0;
        total_samples_estimate = 0;
        //metadata = null;
        
        //write_callback = 0;
        //metadata_callback = 0;
        //client_data = 0;
    }
    
    /*
     void free_()
     {
     unsigned i, channel;
     
     ASSERT(0 != encoder);
     for(i = 0; i < channels; i++) {
     if (0 != integer_signal_unaligned[i]) {
     free(integer_signal_unaligned[i]);
     integer_signal_unaligned[i] = 0;
     }
     if (0 != real_signal_unaligned[i]) {
     free(real_signal_unaligned[i]);
     real_signal_unaligned[i] = 0;
     }
     }
     for(i = 0; i < 2; i++) {
     if (0 != integer_signal_mid_side_unaligned[i]) {
     free(integer_signal_mid_side_unaligned[i]);
     integer_signal_mid_side_unaligned[i] = 0;
     }
     if (0 != real_signal_mid_side_unaligned[i]) {
     free(real_signal_mid_side_unaligned[i]);
     real_signal_mid_side_unaligned[i] = 0;
     }
     }
     for(channel = 0; channel < channels; channel++) {
     for(i = 0; i < 2; i++) {
     if (0 != residual_workspace_unaligned[channel][i]) {
     free(residual_workspace_unaligned[channel][i]);
     residual_workspace_unaligned[channel][i] = 0;
     }
     }
     }
     for(channel = 0; channel < 2; channel++) {
     for(i = 0; i < 2; i++) {
     if (0 != residual_workspace_mid_side_unaligned[channel][i]) {
     free(residual_workspace_mid_side_unaligned[channel][i]);
     residual_workspace_mid_side_unaligned[channel][i] = 0;
     }
     }
     }
     if (0 != abs_residual_unaligned) {
     free(abs_residual_unaligned);
     abs_residual_unaligned = 0;
     }
     if (0 != abs_residual_partition_sums_unaligned) {
     free(abs_residual_partition_sums_unaligned);
     abs_residual_partition_sums_unaligned = 0;
     }
     if (0 != raw_bits_per_partition_unaligned) {
     free(raw_bits_per_partition_unaligned);
     raw_bits_per_partition_unaligned = 0;
     }
     if (verify) {
     for(i = 0; i < channels; i++) {
     if (0 != verifyData.input_fifo.data[i]) {
     free(verifyData.input_fifo.data[i]);
     verifyData.input_fifo.data[i] = 0;
     }
     }
     }
     bitbuffer_free(frame);
     }
     */
    
    /*
     private boolean resize_buffers_(int new_size) {
     boolean ok;
     int i, channel;
     
     // To avoid excessive malloc'ing, we only grow the buffer; no shrinking.
      if (new_size <= input_capacity) return true;
      
      ok = true;
      
      // WATCHOUT: lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx()
       // requires that the input arrays (in our case the integer signals)
        // have a buffer of up to 3 zeroes in front (at negative indices) for
         // alignment purposes; we use 4 to keep the data well-aligned.
          
          for(i = 0; ok && i < channels; i++) {
          ok = ok && memory_alloc_aligned_int32_array(new_size+4, integer_signal_unaligned[i], integer_signal[i]);
          ok = ok && memory_alloc_aligned_real_array(new_size, real_signal_unaligned[i], real_signal[i]);
          memset(integer_signal[i], 0, sizeof(int)*4);
          integer_signal[i] += 4;
          }
          for(i = 0; ok && i < 2; i++) {
          ok = ok && memory_alloc_aligned_int32_array(new_size+4, &integer_signal_mid_side_unaligned[i], &integer_signal_mid_side[i]);
          ok = ok && memory_alloc_aligned_real_array(new_size, &real_signal_mid_side_unaligned[i], &real_signal_mid_side[i]);
          memset(integer_signal_mid_side[i], 0, sizeof(int)*4);
          integer_signal_mid_side[i] += 4;
          }
          for(channel = 0; ok && channel < channels; channel++) {
          for(i = 0; ok && i < 2; i++) {
          ok = ok && memory_alloc_aligned_int32_array(new_size, &residual_workspace_unaligned[channel][i], &residual_workspace[channel][i]);
          }
          }
          for(channel = 0; ok && channel < 2; channel++) {
          for(i = 0; ok && i < 2; i++) {
          ok = ok && memory_alloc_aligned_int32_array(new_size, &residual_workspace_mid_side_unaligned[channel][i], &residual_workspace_mid_side[channel][i]);
          }
          }
          ok = ok && memory_alloc_aligned_uint32_array(new_size, &abs_residual_unaligned, &abs_residual);
          if (precompute_partition_sums || do_escape_coding) // we require precompute_partition_sums if do_escape_coding because of their intertwined nature
          ok = ok && memory_alloc_aligned_uint64_array(new_size * 2, &abs_residual_partition_sums_unaligned, &abs_residual_partition_sums);
          if (do_escape_coding)
          ok = ok && memory_alloc_aligned_unsigned_array(new_size * 2, &raw_bits_per_partition_unaligned, &raw_bits_per_partition);
          
          if (ok)
          input_capacity = new_size;
          else
          state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
          
          return ok;
          }
          */
    
    /*
     private boolean writeBitBuffer(int samples) {
     byte[] buffer;
     unsigned bytes;
     
     bitbuffer_get_buffer(frame, &buffer, &bytes);
     
     if (verify) {
     verifyData.output.data = buffer;
     verifyData.output.bytes = bytes;
     if (verifyData.state_hint == ENCODER_IN_MAGIC) {
     verifyData.needs_magic_hack = true;
     }
     else {
     if (!stream_decoder_process_single(verifyData.decoder)) {
     bitbuffer_release_buffer(frame);
     if (state != STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA)
     state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
     return false;
     }
     }
     }
     
     if (write_callback(buffer, bytes, samples, current_frame_number, client_data) != STREAM_ENCODER_WRITE_STATUS_OK) {
     bitbuffer_release_buffer(frame);
     state = STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING;
     return false;
     }
     
     bitbuffer_release_buffer(frame);
     
     if (samples > 0) {
     metadata.data.stream_info.min_framesize = min(bytes, metadata.data.stream_info.min_framesize);
     metadata.data.stream_info.max_framesize = max(bytes, metadata.data.stream_info.max_framesize);
     }
     
     return true;
     }
     */
    
    /*
     private boolean processFrame(boolean is_last_frame) {
     
     // Accumulate raw signal to the MD5 signature
      if (!MD5Accumulate(&md5context, (int * *)integer_signal, channels, blocksize, (bits_per_sample+7) / 8)) {
      state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
      return false;
      }
      
      // Process the frame header and subframes into the frame bitbuffer
       if (!process_subframes_(is_last_frame)) {
       // the above function sets the state for us in case of an error
        return false;
        }
        
        // Zero-pad the frame to a byte_boundary
         if (!bitbuffer_zero_pad_to_byte_boundary(frame)) {
         state = STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
         return false;
         }
         
         // CRC-16 the whole thing
          ASSERT(bitbuffer_is_byte_aligned(frame));
          bitbuffer_write_raw_uint32(frame, bitbuffer_get_write_crc16(frame), FRAME_FOOTER_CRC_LEN);
          
          // Write it
           if (!write_bitbuffer_(blocksize)) {
           // the above function sets the state for us in case of an error
            return false;
            }
            
            // Get ready for the next frame
             current_sample_number = 0;
             current_frame_number++;
             metadata.data.stream_info.total_samples += (uint64)blocksize;
             
             return true;
             }
             */
    
    /*
     private boolean processSubframes(boolean is_last_frame) {
     Header frame_header;
     int channel, min_partition_order = min_residual_partition_order, max_partition_order;
     boolean do_independent, do_mid_side, precompute_partition_sums;
     
     // Calculate the min,max Rice partition orders
      if (is_last_frame) {
      max_partition_order = 0;
      }
      else {
      max_partition_order = Frame.get_max_rice_partition_order_from_blocksize(blocksize);
      max_partition_order = Math.min(max_partition_order, max_residual_partition_order);
      }
      min_partition_order = Math.min(min_partition_order, max_partition_order);
      
      precompute_partition_sums = precompute_partition_sums && ((max_partition_order > min_partition_order) || do_escape_coding);
      
      // Setup the frame
       frame.clear();
       frame_header.blockSize = blocksize;
       frame_header.sampleRate = sample_rate;
       frame_header.channels = channels;
       frame_header.channelAssignment = Constants.CHANNEL_ASSIGNMENT_INDEPENDENT; // the default unless the encoder determines otherwise
       frame_header.bitsPerSample = bits_per_sample;
       frame_header.frameNumber = current_frame_number;
       
       // Figure out what channel assignments to try
        if (do_mid_side_stereo) {
        if (loose_mid_side_stereo) {
        if (loose_mid_side_stereo_frame_count == 0) {
        do_independent = true;
        do_mid_side = true;
        }
        else {
        do_independent = (last_channel_assignment == Constants.CHANNEL_ASSIGNMENT_INDEPENDENT);
        do_mid_side = !do_independent;
        }
        }
        else {
        do_independent = true;
        do_mid_side = true;
        }
        }
        else {
        do_independent = true;
        do_mid_side = false;
        }
        
        // Check for wasted bits; set effective bps for each subframe
         if (do_independent) {
         for(channel = 0; channel < channels; channel++) {
         int w = get_wasted_bits_(integer_signal[channel], blocksize);
         subframe_workspace[channel][0].wasted_bits = subframe_workspace[channel][1].wasted_bits = w;
         subframe_bps[channel] = bits_per_sample - w;
         }
         }
         if (do_mid_side) {
         ASSERT(channels == 2);
         for(channel = 0; channel < 2; channel++) {
         unsigned w = get_wasted_bits_(integer_signal_mid_side[channel], blocksize);
         subframe_workspace_mid_side[channel][0].wasted_bits = subframe_workspace_mid_side[channel][1].wasted_bits = w;
         subframe_bps_mid_side[channel] = bits_per_sample - w + (channel==0? 0:1);
         }
         }
         
         // First do a normal encoding pass of each independent channel
          if (do_independent) {
          for(channel = 0; channel < channels; channel++) {
          if (!
          process_subframe_(
          encoder,
          min_partition_order,
          max_partition_order,
          precompute_partition_sums,
          frame_header,
          subframe_bps[channel],
          integer_signal[channel],
          real_signal[channel],
          subframe_workspace_ptr[channel],
          partitioned_rice_contents_workspace_ptr[channel],
          residual_workspace[channel],
          best_subframe+channel,
          best_subframe_bits+channel
          )
          )
          return false;
          }
          }
          
          // Now do mid and side channels if requested
           if (do_mid_side) {
           
           for(channel = 0; channel < 2; channel++) {
           if (!
           process_subframe_(
           encoder,
           min_partition_order,
           max_partition_order,
           precompute_partition_sums,
           frame_header,
           subframe_bps_mid_side[channel],
           integer_signal_mid_side[channel],
           real_signal_mid_side[channel],
           subframe_workspace_ptr_mid_side[channel],
           partitioned_rice_contents_workspace_ptr_mid_side[channel],
           residual_workspace_mid_side[channel],
           best_subframe_mid_side+channel,
           best_subframe_bits_mid_side+channel
           )
           )
           return false;
           }
           }
           
           // Compose the frame bitbuffer
            if (do_mid_side) {
            unsigned left_bps = 0, right_bps = 0; // initialized only to prevent superfluous compiler warning
            ChannelBase left_subframe, right_subframe; // initialized only to prevent superfluous compiler warning
            ChannelAssignment channel_assignment;
            
            if (loose_mid_side_stereo && loose_mid_side_stereo_frame_count > 0) {
            channel_assignment = (last_channel_assignment == CHANNEL_ASSIGNMENT_INDEPENDENT? CHANNEL_ASSIGNMENT_INDEPENDENT : CHANNEL_ASSIGNMENT_MID_SIDE);
            }
            else {
            int[] bits = new int[4]; // WATCHOUT - indexed by ChannelAssignment
            int min_bits;
            int ca;
            
            // We have to figure out which channel assignent results in the smallest frame
             bits[CHANNEL_ASSIGNMENT_INDEPENDENT] = best_subframe_bits         [0] + best_subframe_bits         [1];
             bits[CHANNEL_ASSIGNMENT_LEFT_SIDE  ] = best_subframe_bits         [0] + best_subframe_bits_mid_side[1];
             bits[CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = best_subframe_bits         [1] + best_subframe_bits_mid_side[1];
             bits[CHANNEL_ASSIGNMENT_MID_SIDE   ] = best_subframe_bits_mid_side[0] + best_subframe_bits_mid_side[1];
             
             for(channel_assignment = (ChannelAssignment)0, min_bits = bits[0], ca = (ChannelAssignment)1; (int)ca <= 3; ca = (ChannelAssignment)((int)ca + 1)) {
             if (bits[ca] < min_bits) {
             min_bits = bits[ca];
             channel_assignment = ca;
             }
             }
             }
             
             frame_header.channel_assignment = channel_assignment;
             
             if (!frame_add_header(frame_header, streamable_subset, is_last_frame, frame)) {
             state = STREAM_ENCODER_FRAMING_ERROR;
             return false;
             }
             
             switch(channel_assignment) {
             case CHANNEL_ASSIGNMENT_INDEPENDENT:
             left_subframe  = subframe_workspace         [0][best_subframe         [0]];
             right_subframe = subframe_workspace         [1][best_subframe         [1]];
             break;
             case CHANNEL_ASSIGNMENT_LEFT_SIDE:
             left_subframe  = subframe_workspace         [0][best_subframe         [0]];
             right_subframe = subframe_workspace_mid_side[1][best_subframe_mid_side[1]];
             break;
             case CHANNEL_ASSIGNMENT_RIGHT_SIDE:
             left_subframe  = subframe_workspace_mid_side[1][best_subframe_mid_side[1]];
             right_subframe = subframe_workspace         [1][best_subframe         [1]];
             break;
             case CHANNEL_ASSIGNMENT_MID_SIDE:
             left_subframe  = subframe_workspace_mid_side[0][best_subframe_mid_side[0]];
             right_subframe = subframe_workspace_mid_side[1][best_subframe_mid_side[1]];
             break;
             default:
             ASSERT(0);
             }
             
             switch(channel_assignment) {
             case CHANNEL_ASSIGNMENT_INDEPENDENT:
             left_bps  = subframe_bps         [0];
             right_bps = subframe_bps         [1];
             break;
             case CHANNEL_ASSIGNMENT_LEFT_SIDE:
             left_bps  = subframe_bps         [0];
             right_bps = subframe_bps_mid_side[1];
             break;
             case CHANNEL_ASSIGNMENT_RIGHT_SIDE:
             left_bps  = subframe_bps_mid_side[1];
             right_bps = subframe_bps         [1];
             break;
             case CHANNEL_ASSIGNMENT_MID_SIDE:
             left_bps  = subframe_bps_mid_side[0];
             right_bps = subframe_bps_mid_side[1];
             break;
             default:
             ASSERT(0);
             }
             
             // note that encoder_add_subframe_ sets the state for us in case of an error
              if (!add_subframe_(frame_header, left_bps , left_subframe , frame))
              return false;
              if (!add_subframe_(frame_header, right_bps, right_subframe, frame))
              return false;
              }
              else {
              if (!frame_add_header(frame_header, streamable_subset, is_last_frame, frame)) {
              state = STREAM_ENCODER_FRAMING_ERROR;
              return false;
              }
              
              for(channel = 0; channel < channels; channel++) {
              if (!add_subframe_(frame_header, subframe_bps[channel], subframe_workspace[channel][best_subframe[channel]], frame)) {
              // the above function sets the state for us in case of an error
               return false;
               }
               }
               }
               
               if (loose_mid_side_stereo) {
               loose_mid_side_stereo_frame_count++;
               if (loose_mid_side_stereo_frame_count >= loose_mid_side_stereo_frames)
               loose_mid_side_stereo_frame_count = 0;
               }
               
               last_channel_assignment = frame_header.channel_assignment;
               
               return true;
               }
               */
    
    /*
     private boolean processSubframe(int min_partition_order,
     int max_partition_order,
     boolean precompute_partition_sums,
     Header frame_header,
     int subframe_bps,
     int[] integer_signal,
     double[] real_signal,
     Subframe[] subframe],
     EntropyPartitionedRiceContents[] partitioned_rice_contents,
     int[] residual,
     int *best_subframe,
     int *best_bits
     )
     {
     double[] fixed_residual_bits_per_sample = new double[MAX_FIXED_ORDER+1];
     double lpc_residual_bits_per_sample;
     double[] autoc = new double[MAX_LPC_ORDER+1]; // WATCHOUT: the size is important even though max_lpc_order might be less; some asm routines need all the space
     double[] lpc_error = new double[MAX_LPC_ORDER];
     int min_lpc_order, max_lpc_order, lpc_order;
     int min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
     int min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
     int rice_parameter;
     int _candidate_bits, _best_bits;
     int _best_subframe;
     
     // verbatim subframe is the baseline against which we measure other compressed subframes
      _best_subframe = 0;
      if (disable_verbatim_subframes && frame_header.blocksize >= MAX_FIXED_ORDER)
      _best_bits = UINT_MAX;
      else
      _best_bits = evaluateVerbatimSubframe(integer_signal, frame_header.blocksize, subframe_bps, subframe[_best_subframe]);
      
      if (frame_header.blocksize >= MAX_FIXED_ORDER) {
      unsigned signal_is_constant = false;
      guess_fixed_order = local_fixed_compute_best_predictor(integer_signal+MAX_FIXED_ORDER, frame_header.blocksize-MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
      // check for constant subframe
       if (!disable_constant_subframes && fixed_residual_bits_per_sample[1] == 0.0) {
       // the above means integer_signal+MAX_FIXED_ORDER is constant, now we just have to check the warmup samples
        unsigned i;
        signal_is_constant = true;
        for(i = 1; i <= MAX_FIXED_ORDER; i++) {
        if (integer_signal[0] != integer_signal[i]) {
        signal_is_constant = false;
        break;
        }
        }
        }
        if (signal_is_constant) {
        _candidate_bits = evaluate_constant_subframe_(integer_signal[0], subframe_bps, subframe[!_best_subframe]);
        if (_candidate_bits < _best_bits) {
        _best_subframe = !_best_subframe;
        _best_bits = _candidate_bits;
        }
        }
        else {
        if (!disable_fixed_subframes || (max_lpc_order == 0 && _best_bits == UINT_MAX)) {
        // encode fixed
         if (do_exhaustive_model_search) {
         min_fixed_order = 0;
         max_fixed_order = MAX_FIXED_ORDER;
         }
         else {
         min_fixed_order = max_fixed_order = guess_fixed_order;
         }
         for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
         if (fixed_residual_bits_per_sample[fixed_order] >= (double)subframe_bps)
         continue; // don't even try
         rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; // 0.5 is for rounding
         rice_parameter++; // to account for the signed->unsigned conversion during rice coding
         if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
         fprintf(stderr, "clipping rice_parameter (%u -> %u) @0\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
         rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
         }
         _candidate_bits =
         evaluate_fixed_subframe_(
         encoder,
         integer_signal,
         residual[!_best_subframe],
         abs_residual,
         abs_residual_partition_sums,
         raw_bits_per_partition,
         frame_header.blocksize,
         subframe_bps,
         fixed_order,
         rice_parameter,
         min_partition_order,
         max_partition_order,
         precompute_partition_sums,
         do_escape_coding,
         rice_parameter_search_dist,
         subframe[!_best_subframe],
         partitioned_rice_contents[!_best_subframe]
         );
         if (_candidate_bits < _best_bits) {
         _best_subframe = !_best_subframe;
         _best_bits = _candidate_bits;
         }
         }
         }
         
         // encode lpc
          if (max_lpc_order > 0) {
          if (max_lpc_order >= frame_header.blocksize)
          max_lpc_order = frame_header.blocksize-1;
          else
          max_lpc_order = max_lpc_order;
          if (max_lpc_order > 0) {
          local_lpc_compute_autocorrelation(real_signal, frame_header.blocksize, max_lpc_order+1, autoc);
          // if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen
           if (autoc[0] != 0.0) {
           lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
           if (do_exhaustive_model_search) {
           min_lpc_order = 1;
           }
           else {
           unsigned guess_lpc_order = lpc_compute_best_order(lpc_error, max_lpc_order, frame_header.blocksize, subframe_bps);
           min_lpc_order = max_lpc_order = guess_lpc_order;
           }
           for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
           lpc_residual_bits_per_sample = lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header.blocksize-lpc_order);
           if (lpc_residual_bits_per_sample >= (double)subframe_bps)
           continue; // don't even try
           rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; // 0.5 is for rounding
           rice_parameter++; // to account for the signed->unsigned conversion during rice coding
           if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
           fprintf(stderr, "clipping rice_parameter (%u -> %u) @1\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
           rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
           }
           if (do_qlp_coeff_prec_search) {
           min_qlp_coeff_precision = MIN_QLP_COEFF_PRECISION;
           // ensure a 32-bit datapath throughout for 16bps or less
            if (subframe_bps <= 16)
            max_qlp_coeff_precision = min(32 - subframe_bps - lpc_order, MAX_QLP_COEFF_PRECISION);
            else
            max_qlp_coeff_precision = MAX_QLP_COEFF_PRECISION;
            }
            else {
            min_qlp_coeff_precision = max_qlp_coeff_precision = qlp_coeff_precision;
            }
            for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
            _candidate_bits =
            evaluate_lpc_subframe_(
            encoder,
            integer_signal,
            residual[!_best_subframe],
            abs_residual,
            abs_residual_partition_sums,
            raw_bits_per_partition,
            lp_coeff[lpc_order-1],
            frame_header.blocksize,
            subframe_bps,
            lpc_order,
            qlp_coeff_precision,
            rice_parameter,
            min_partition_order,
            max_partition_order,
            precompute_partition_sums,
            do_escape_coding,
            rice_parameter_search_dist,
            subframe[!_best_subframe],
            partitioned_rice_contents[!_best_subframe]
            );
            if (_candidate_bits > 0) { // if == 0, there was a problem quantizing the lpcoeffs
            if (_candidate_bits < _best_bits) {
            _best_subframe = !_best_subframe;
            _best_bits = _candidate_bits;
            }
            }
            }
            }
            }
            }
            }
            }
            }
            
            // under rare circumstances this can happen when all but lpc subframe types are disabled:
             if (_best_bits == UINT_MAX) {
             ASSERT(_best_subframe == 0);
             _best_bits = evaluateVerbatimSubframe(integer_signal, frame_header.blocksize, subframe_bps, subframe[_best_subframe]);
             }
             
             *best_subframe = _best_subframe;
             *best_bits = _best_bits;
             
             return true;
             }
             */
    
    /*
     private boolean addSubframe(Header frame_header, int subframe_bps, ChannelBase subframe, BitBuffer frame) {
     switch(subframe->type) {
     case SUBFRAME_TYPE_CONSTANT:
     if (!subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) {
     state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
     return false;
     }
     break;
     case SUBFRAME_TYPE_FIXED:
     if (!subframe_add_fixed(&(subframe->data.fixed), frame_header.blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) {
     state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
     return false;
     }
     break;
     case SUBFRAME_TYPE_LPC:
     if (!subframe_add_lpc(&(subframe->data.lpc), frame_header.blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) {
     state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
     return false;
     }
     break;
     case SUBFRAME_TYPE_VERBATIM:
     if (!subframe_add_verbatim(&(subframe->data.verbatim), frame_header.blocksize, subframe_bps, subframe->wasted_bits, frame)) {
     state = STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
     return false;
     }
     break;
     default:
     ASSERT(0);
     }
     
     return true;
     }
     */
    
    /*
     private int evaluateConstantSubframe(int signal, int subframe_bps, ChannelBase subframe) {
     subframe->type = SUBFRAME_TYPE_CONSTANT;
     subframe->data.constant.value = signal;
     
     return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + subframe_bps;
     }
     */
    
    /*
     private int evaluateFixedSubframe(int[] signal, int[] residual, int[] abs_residual, long[] abs_residual_partition_sums, int[] raw_bits_per_partition, int blocksize, int subframe_bps, int order, int rice_parameter, int min_partition_order, int max_partition_order, boolean precompute_partition_sums, boolean do_escape_coding, int rice_parameter_search_dist, ChannelBase subframe, EntropyPartitionedRiceContents partitioned_rice_contents) {
     unsigned i, residual_bits;
     unsigned residual_samples = blocksize - order;
     
     fixed_compute_residual(signal+order, residual_samples, order, residual);
     
     subframe->type = SUBFRAME_TYPE_FIXED;
     
     subframe->data.fixed.entropy_coding_method.type = ENTROPY_CODING_METHOD_PARTITIONED_RICE;
     subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
     subframe->data.fixed.residual = residual;
     
     residual_bits =
     find_best_partition_order_(
     encoder->private_,
     residual,
     abs_residual,
     abs_residual_partition_sums,
     raw_bits_per_partition,
     residual_samples,
     order,
     rice_parameter,
     min_partition_order,
     max_partition_order,
     precompute_partition_sums,
     do_escape_coding,
     rice_parameter_search_dist,
     &subframe->data.fixed.entropy_coding_method.data.partitioned_rice
     );
     
     subframe->data.fixed.order = order;
     for(i = 0; i < order; i++)
     subframe->data.fixed.warmup[i] = signal[i];
     
     return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + (order * subframe_bps) + residual_bits;
     }
     */
    
    /*
     private int evaluateLPCSubframe(int[] signal, int[] residual, int[] abs_residual, long[] abs_residual_partition_sums, int[] raw_bits_per_partition, double[] lp_coeff, int blocksize, int subframe_bps, int order, int qlp_coeff_precision, int rice_parameter, int min_partition_order, int max_partition_order, boolean precompute_partition_sums, boolean do_escape_coding, int rice_parameter_search_dist, ChannelBase subframe, EntropyPartitionedRiceContents partitioned_rice_contents) {
     int[] qlp_coeff = new int[MAX_LPC_ORDER];
     int i, residual_bits;
     int quantization, ret;
     int residual_samples = blocksize - order;
     
     // try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps streams
      if (subframe_bps <= 16) {
      ASSERT(order > 0);
      ASSERT(order <= MAX_LPC_ORDER);
      qlp_coeff_precision = min(qlp_coeff_precision, 32 - subframe_bps - bitmath_ilog2(order));
      }
      
      ret = lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, quantization);
      if (ret != 0)
      return 0; // this is a hack to indicate to the caller that we can't do lp at this order on this subframe
      
      if (subframe_bps + qlp_coeff_precision + bitmath_ilog2(order) <= 32)
      if (subframe_bps <= 16 && qlp_coeff_precision <= 16)
      local_lpc_compute_residual_from_qlp_coefficients_16bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
      else
      local_lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
      else
      local_lpc_compute_residual_from_qlp_coefficients_64bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
      
      subframe->type = SUBFRAME_TYPE_LPC;
      
      subframe->data.lpc.entropy_coding_method.type = ENTROPY_CODING_METHOD_PARTITIONED_RICE;
      subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
      subframe->data.lpc.residual = residual;
      
      residual_bits =
      find_best_partition_order_(
      encoder->private_,
      residual,
      abs_residual,
      abs_residual_partition_sums,
      raw_bits_per_partition,
      residual_samples,
      order,
      rice_parameter,
      min_partition_order,
      max_partition_order,
      precompute_partition_sums,
      do_escape_coding,
      rice_parameter_search_dist,
      &subframe->data.fixed.entropy_coding_method.data.partitioned_rice
      );
      
      subframe->data.lpc.order = order;
      subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
      subframe->data.lpc.quantization_level = quantization;
      memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int)*MAX_LPC_ORDER);
      for(i = 0; i < order; i++)
      subframe->data.lpc.warmup[i] = signal[i];
      
      return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits;
      }
      */
    
    /*
     private int evaluateVerbatimSubframe(int[] signal, int blocksize, int subframe_bps, ChannelVerbatim subframe) {
     
     subframe.data = signal;
     
     return SUBFRAME_ZERO_PAD_LEN + SUBFRAME_TYPE_LEN + SUBFRAME_WASTED_BITS_FLAG_LEN + (blocksize * subframe_bps);
     }
     */
    
    /*
     private int findBestPartitionOrder(int[] residual, int[] abs_residual, long[] abs_residual_partition_sums, int[] raw_bits_per_partition, int residual_samples, int predictor_order, int rice_parameter, int min_partition_order, int max_partition_order, boolean precompute_partition_sums, boolean do_escape_coding, int rice_parameter_search_dist, EntropyPartitionedRice best_partitioned_rice) {
     int r;
     unsigned residual_bits, best_residual_bits = 0;
     unsigned residual_sample;
     unsigned best_parameters_index = 0;
     unsigned blocksize = residual_samples + predictor_order;
     
     // compute abs(residual) for use later
      for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) {
      r = residual[residual_sample];
      abs_residual[residual_sample] = (uint32)(r<0? -r : r);
      }
      
      max_partition_order = format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order);
      min_partition_order = min(min_partition_order, max_partition_order);
      
      if (precompute_partition_sums) {
      int partition_order;
      unsigned sum;
      
      precompute_partition_info_sums_(abs_residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order);
      
      if (do_escape_coding)
      precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order);
      
      for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) {
      if (!
      set_partitioned_rice_with_precompute_(
      abs_residual,
      abs_residual_partition_sums+sum,
      raw_bits_per_partition+sum,
      residual_samples,
      predictor_order,
      rice_parameter,
      rice_parameter_search_dist,
      (unsigned)partition_order,
      do_escape_coding,
      &partitioned_rice_contents_extra[!best_parameters_index],
      &residual_bits
      )
      )
      {
      ASSERT(best_residual_bits != 0);
      break;
      }
      sum += 1 << partition_order;
      if (best_residual_bits == 0 || residual_bits < best_residual_bits) {
      best_residual_bits = residual_bits;
      best_parameters_index = !best_parameters_index;
      best_partitioned_rice.order = partition_order;
      }
      }
      }
      else {
      unsigned partition_order;
      for(partition_order = min_partition_order; partition_order <= max_partition_order; partition_order++) {
      if (!
      set_partitioned_rice_(
      abs_residual,
      residual_samples,
      predictor_order,
      rice_parameter,
      rice_parameter_search_dist,
      partition_order,
      &partitioned_rice_contents_extra[!best_parameters_index],
      &residual_bits
      )
      )
      {
      break;
      }
      if (best_residual_bits == 0 || residual_bits < best_residual_bits) {
      best_residual_bits = residual_bits;
      best_parameters_index = !best_parameters_index;
      best_partitioned_rice.order = partition_order;
      }
      }
      }
      
      // We are allowed to de-the pointer based on our special knowledge; it is to the outside world.
       {
       EntropyPartitionedRiceContents best_partitioned_rice_contents = (EntropyPartitionedRiceContents)best_partitioned_rice->contents;
       format_entropy_coding_method_partitioned_rice_contents_ensure_size(best_partitioned_rice_contents, max(6, best_partitioned_rice->order));
       memcpy(best_partitioned_rice_contents->parameters, partitioned_rice_contents_extra[best_parameters_index].parameters, sizeof(unsigned)*(1<<(best_partitioned_rice->order)));
       memcpy(best_partitioned_rice_contents->raw_bits, partitioned_rice_contents_extra[best_parameters_index].raw_bits, sizeof(unsigned)*(1<<(best_partitioned_rice->order)));
       }
       
       return best_residual_bits;
       }
       */
    
    /*
     private void precomputePartitionInfoSums(
     int[] abs_residual,
     long[] abs_residual_partition_sums,
     int residual_samples,
     int predictor_order,
     int min_partition_order,
     int max_partition_order
     )
     {
     int partition_order;
     unsigned from_partition, to_partition = 0;
     unsigned blocksize = residual_samples + predictor_order;
     
     // first do max_partition_order
      for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) {
      long abs_residual_partition_sum;
      int abs_r;
      int partition, partition_sample, partition_samples, residual_sample;
      int partitions = 1 << partition_order;
      int default_partition_samples = blocksize >> partition_order;
      
      for(partition = residual_sample = 0; partition < partitions; partition++) {
      partition_samples = default_partition_samples;
      if (partition == 0)
      partition_samples -= predictor_order;
      abs_residual_partition_sum = 0;
      for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) {
      abs_r = abs_residual[residual_sample];
      abs_residual_partition_sum += abs_r;
      residual_sample++;
      }
      abs_residual_partition_sums[partition] = abs_residual_partition_sum;
      }
      to_partition = partitions;
      break;
      }
      
      // now merge partitions for lower orders
       for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) {
       long s;
       int i;
       int partitions = 1 << partition_order;
       for(i = 0; i < partitions; i++) {
       s = abs_residual_partition_sums[from_partition];
       from_partition++;
       abs_residual_partition_sums[to_partition] = s + abs_residual_partition_sums[from_partition];
       from_partition++;
       to_partition++;
       }
       }
       }
       */
    
    /*
     private void precomputePartitionInfoEscapes(
     int[] residual,
     int[] raw_bits_per_partition,
     int residual_samples,
     int predictor_order,
     int min_partition_order,
     int max_partition_order
     )
     {
     int partition_order;
     unsigned from_partition, to_partition = 0;
     unsigned blocksize = residual_samples + predictor_order;
     
     // first do max_partition_order
      for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) {
      int r, residual_partition_min, residual_partition_max;
      int silog2_min, silog2_max;
      int partition, partition_sample, partition_samples, residual_sample;
      int partitions = 1 << partition_order;
      int default_partition_samples = blocksize >> partition_order;
      
      for(partition = residual_sample = 0; partition < partitions; partition++) {
      partition_samples = default_partition_samples;
      if (partition == 0)
      partition_samples -= predictor_order;
      residual_partition_min = residual_partition_max = 0;
      for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) {
      r = residual[residual_sample];
      if (r < residual_partition_min)
      residual_partition_min = r;
      else if (r > residual_partition_max)
      residual_partition_max = r;
      residual_sample++;
      }
      silog2_min = bitmath_silog2(residual_partition_min);
      silog2_max = bitmath_silog2(residual_partition_max);
      raw_bits_per_partition[partition] = max(silog2_min, silog2_max);
      }
      to_partition = partitions;
      break;
      }
      
      // now merge partitions for lower orders
       for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) {
       int m;
       int i;
       int partitions = 1 << partition_order;
       for(i = 0; i < partitions; i++) {
       m = raw_bits_per_partition[from_partition];
       from_partition++;
       raw_bits_per_partition[to_partition] = max(m, raw_bits_per_partition[from_partition]);
       from_partition++;
       to_partition++;
       }
       }
       }
       */
    
    /*
     private VARIABLE_RICE_BITS(value, parameter) { return ((value) >> (parameter)); }
     
     boolean set_partitioned_rice_(
     int[] abs_residual,
     int residual_samples,
     int predictor_order,
     int suggested_rice_parameter,
     int rice_parameter_search_dist,
     int partition_order,
     EntropyPartitionedRiceContents partitioned_rice_contents,
     int *bits
     )
     {
     int rice_parameter, partition_bits;
     int best_partition_bits;
     int min_rice_parameter, max_rice_parameter, best_rice_parameter = 0;
     int bits_ = ENTROPY_CODING_METHOD_TYPE_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
     int *parameters;
     
     format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order));
     parameters = partitioned_rice_contents.parameters;
     
     if (partition_order == 0) {
     unsigned i;
     
     if (rice_parameter_search_dist) {
     if (suggested_rice_parameter < rice_parameter_search_dist)
     min_rice_parameter = 0;
     else
     min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist;
     max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist;
     if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
     fprintf(stderr, "clipping rice_parameter (%u -> %u) @2\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
     max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
     }
     }
     else
     min_rice_parameter = max_rice_parameter = suggested_rice_parameter;
     
     best_partition_bits = 0xffffffff;
     for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
     unsigned rice_parameter_estimate = rice_parameter-1;
     partition_bits = (1+rice_parameter) * residual_samples;
     partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
     for(i = 0; i < residual_samples; i++) {
     partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
     }
     if (partition_bits < best_partition_bits) {
     best_rice_parameter = rice_parameter;
     best_partition_bits = partition_bits;
     }
     }
     parameters[0] = best_rice_parameter;
     bits_ += best_partition_bits;
     }
     else {
     unsigned partition, residual_sample, save_residual_sample, partition_sample;
     unsigned partition_samples;
     uint64 mean, k;
     int partitions = 1 << partition_order;
     for(partition = residual_sample = 0; partition < partitions; partition++) {
     partition_samples = (residual_samples+predictor_order) >> partition_order;
     if (partition == 0) {
     if (partition_samples <= predictor_order)
     return false;
     else
     partition_samples -= predictor_order;
     }
     mean = 0;
     save_residual_sample = residual_sample;
     for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++)
     mean += abs_residual[residual_sample];
     residual_sample = save_residual_sample;
     // calc rice_parameter ala LOCO-I
      for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1)
      ;
      if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
      fprintf(stderr, "clipping rice_parameter (%u -> %u) @3\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
      rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
      }
      
      if (rice_parameter_search_dist) {
      if (rice_parameter < rice_parameter_search_dist)
      min_rice_parameter = 0;
      else
      min_rice_parameter = rice_parameter - rice_parameter_search_dist;
      max_rice_parameter = rice_parameter + rice_parameter_search_dist;
      if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
      fprintf(stderr, "clipping rice_parameter (%u -> %u) @4\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
      max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
      }
      }
      else
      min_rice_parameter = max_rice_parameter = rice_parameter;
      
      best_partition_bits = 0xffffffff;
      for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
      unsigned rice_parameter_estimate = rice_parameter-1;
      partition_bits = (1+rice_parameter) * partition_samples;
      partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
      save_residual_sample = residual_sample;
      for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) {
      partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter);
      }
      if (rice_parameter != max_rice_parameter)
      residual_sample = save_residual_sample;
      if (partition_bits < best_partition_bits) {
      best_rice_parameter = rice_parameter;
      best_partition_bits = partition_bits;
      }
      }
      parameters[partition] = best_rice_parameter;
      bits_ += best_partition_bits;
      }
      }
      
      *bits = bits_;
      return true;
      }
      */
    
    /*
     boolean set_partitioned_rice_with_precompute_(
     int[] abs_residual,
     long[] abs_residual_partition_sums,
     int[] raw_bits_per_partition,
     int residual_samples,
     int predictor_order,
     int suggested_rice_parameter,
     int rice_parameter_search_dist,
     int partition_order,
     boolean search_for_escapes,
     EntropyPartitionedRiceContents partitioned_rice_contents,
     int *bits
     )
     {
     int rice_parameter, partition_bits;
     int best_partition_bits;
     int min_rice_parameter, max_rice_parameter, best_rice_parameter = 0;
     int flat_bits;
     int bits_ = ENTROPY_CODING_METHOD_TYPE_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
     int *parameters, *raw_bits;
     
     format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order));
     parameters = partitioned_rice_contents.parameters;
     raw_bits = partitioned_rice_contents.raw_bits;
     
     if (partition_order == 0) {
     unsigned i;
     
     if (rice_parameter_search_dist) {
     if (suggested_rice_parameter < rice_parameter_search_dist)
     min_rice_parameter = 0;
     else
     min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist;
     max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist;
     if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
     fprintf(stderr, "clipping rice_parameter (%u -> %u) @5\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
     max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
     }
     }
     else
     min_rice_parameter = max_rice_parameter = suggested_rice_parameter;
     
     best_partition_bits = 0xffffffff;
     for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
     unsigned rice_parameter_estimate = rice_parameter-1;
     partition_bits = (1+rice_parameter) * residual_samples;
     partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
     for(i = 0; i < residual_samples; i++) {
     partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
     }
     if (partition_bits < best_partition_bits) {
     best_rice_parameter = rice_parameter;
     best_partition_bits = partition_bits;
     }
     }
     if (search_for_escapes) {
     flat_bits = ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[0] * residual_samples;
     if (flat_bits <= best_partition_bits) {
     raw_bits[0] = raw_bits_per_partition[0];
     best_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
     best_partition_bits = flat_bits;
     }
     }
     parameters[0] = best_rice_parameter;
     bits_ += best_partition_bits;
     }
     else {
     unsigned partition, residual_sample, save_residual_sample, partition_sample;
     unsigned partition_samples;
     uint64 mean, k;
     unsigned partitions = 1 << partition_order;
     for(partition = residual_sample = 0; partition < partitions; partition++) {
     partition_samples = (residual_samples+predictor_order) >> partition_order;
     if (partition == 0) {
     if (partition_samples <= predictor_order)
     return false;
     else
     partition_samples -= predictor_order;
     }
     mean = abs_residual_partition_sums[partition];
     // calc rice_parameter ala LOCO-I
      for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1)
      ;
      if (rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
      fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
      rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
      }
      
      if (rice_parameter_search_dist) {
      if (rice_parameter < rice_parameter_search_dist)
      min_rice_parameter = 0;
      else
      min_rice_parameter = rice_parameter - rice_parameter_search_dist;
      max_rice_parameter = rice_parameter + rice_parameter_search_dist;
      if (max_rice_parameter >= ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
      fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
      max_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
      }
      }
      else
      min_rice_parameter = max_rice_parameter = rice_parameter;
      
      best_partition_bits = 0xffffffff;
      for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
      unsigned rice_parameter_estimate = rice_parameter-1;
      partition_bits = (1+rice_parameter) * partition_samples;
      partition_bits += ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
      save_residual_sample = residual_sample;
      for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) {
      partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate);
      }
      if (rice_parameter != max_rice_parameter)
      residual_sample = save_residual_sample;
      if (partition_bits < best_partition_bits) {
      best_rice_parameter = rice_parameter;
      best_partition_bits = partition_bits;
      }
      }
      if (search_for_escapes) {
      flat_bits = ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples;
      if (flat_bits <= best_partition_bits) {
      raw_bits[partition] = raw_bits_per_partition[partition];
      best_rice_parameter = ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
      best_partition_bits = flat_bits;
      }
      }
      parameters[partition] = best_rice_parameter;
      bits_ += best_partition_bits;
      }
      }
      
      *bits = bits_;
      return true;
      }
      */
    
    /*
     private int getWastedBits(int[] signal, int samples) {
     int i, shift;
     int x = 0;
     
     for(i = 0; i < samples && !(x&1); i++)
     x |= signal[i];
     
     if (x == 0) {
     shift = 0;
     }
     else {
     for(shift = 0; !(x&1); shift++)
     x >>= 1;
     }
     
     if (shift > 0) {
     for(i = 0; i < samples; i++)
     signal[i] >>= shift;
     }
     
     return shift;
     }
     */
    
    /*
     private void appendToVerifyFifo(verify_input_fifo fifo, int[][] input, int input_offset, unsigned channels, unsigned wide_samples) {
     unsigned channel;
     
     for(channel = 0; channel < channels; channel++)
     memcpy(&fifo.data[channel][fifo->tail], &input[channel][input_offset], sizeof(int) * wide_samples);
     
     fifo.tail += wide_samples;
     }
     
     private void appendToVerifyFifoInterleaved(verify_input_fifo fifo, int input[], int input_offset, int channels, int wide_samples) {
     int tail = fifo.tail;
     
     int sample = input_offset * channels;
     for(int wide_sample = 0; wide_sample < wide_samples; wide_sample++) {
     for(int channel = 0; channel < channels; channel++)
     fifo.data[channel][tail] = input[sample++];
     tail++;
     }
     fifo.tail = tail;
     }
     */
    
    /*
     StreamDecoderReadStatus verify_read_callback_(StreamDecoder decoder, byte buffer[], unsigned *bytes, void *client_data)
     {
     StreamEncoder *encoder = (StreamEncoder*)client_data;
     unsigned encoded_bytes = verifyData.output.bytes;
     (void)decoder;
     
     if (verifyData.needs_magic_hack) {
     ASSERT(*bytes >= STREAM_SYNC_LENGTH);
     *bytes = STREAM_SYNC_LENGTH;
     memcpy(buffer, STREAM_SYNC_STRING, *bytes);
     verifyData.needs_magic_hack = false;
     }
     else {
     if (encoded_bytes == 0) {
     // If we get here, a FIFO underflow has occurred, which means there is a bug somewhere.
      ASSERT(0);
      return STREAM_DECODER_READ_STATUS_ABORT;
      }
      else if (encoded_bytes < *bytes)
      *bytes = encoded_bytes;
      memcpy(buffer, verifyData.output.data, *bytes);
      verifyData.output.data += *bytes;
      verifyData.output.bytes -= *bytes;
      }
      
      return STREAM_DECODER_READ_STATUS_CONTINUE;
      }
      */
    
    /*
     StreamDecoderWriteStatus verify_write_callback_(StreamDecoder *decoder, Frame *frame, int * buffer[], void *client_data)
     {
     StreamEncoder *encoder = (StreamEncoder *)client_data;
     unsigned channel;
     unsigned channels = stream_decoder_get_channels(decoder);
     unsigned blocksize = frame->header.blocksize;
     unsigned bytes_per_block = sizeof(int) * blocksize;
     
     for(channel = 0; channel < channels; channel++) {
     if (0 != memcmp(buffer[channel], verifyData.input_fifo.data[channel], bytes_per_block)) {
     unsigned i, sample = 0;
     int expect = 0, got = 0;
     
     for(i = 0; i < blocksize; i++) {
     if (buffer[channel][i] != verifyData.input_fifo.data[channel][i]) {
     sample = i;
     expect = (int)verifyData.input_fifo.data[channel][i];
     got = (int)buffer[channel][i];
     break;
     }
     }
     ASSERT(i < blocksize);
     ASSERT(frame->header.number_type == FRAME_NUMBER_TYPE_SAMPLE_NUMBER);
     verifyData.error_stats.absolute_sample = frame->header.number.sample_number + sample;
     verifyData.error_stats.frame_number = (unsigned)(frame->header.number.sample_number / blocksize);
     verifyData.error_stats.channel = channel;
     verifyData.error_stats.sample = sample;
     verifyData.error_stats.expected = expect;
     verifyData.error_stats.got = got;
     state = STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA;
     return STREAM_DECODER_WRITE_STATUS_ABORT;
     }
     }
     // dequeue the frame from the fifo
      for(channel = 0; channel < channels; channel++) {
      memmove(&verifyData.input_fifo.data[channel][0], &verifyData.input_fifo.data[channel][blocksize], verifyData.input_fifo.tail - blocksize);
      }
      verifyData.input_fifo.tail -= blocksize;
      return STREAM_DECODER_WRITE_STATUS_CONTINUE;
      }
      */
    
    /*
     void verify_metadata_callback_(StreamDecoder *decoder, StreamMetadata *metadata, void *client_data)
     {
     (void)decoder, (void)metadata, (void)client_data;
     }
     */
    
    /*
     void verify_error_callback_(StreamDecoder *decoder, StreamDecoderErrorStatus status, void *client_data)
     {
     StreamEncoder *encoder = (StreamEncoder*)client_data;
     (void)decoder, (void)status;
     state = STREAM_ENCODER_VERIFY_DECODER_ERROR;
     }
     */
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy