com.sun.prism.BasicStroke Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2009, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.prism;
import com.sun.javafx.geom.Area;
import com.sun.javafx.geom.GeneralShapePair;
import com.sun.javafx.geom.Path2D;
import com.sun.javafx.geom.PathIterator;
import com.sun.javafx.geom.RoundRectangle2D;
import com.sun.javafx.geom.Shape;
import com.sun.javafx.geom.ShapePair;
import com.sun.javafx.geom.transform.BaseTransform;
import com.sun.prism.impl.shape.ShapeUtil;
public final class BasicStroke {
/** Constant value for end cap style. */
public static final int CAP_BUTT = 0;
/** Constant value for end cap style. */
public static final int CAP_ROUND = 1;
/** Constant value for end cap style. */
public static final int CAP_SQUARE = 2;
/** Constant value for join style. */
public static final int JOIN_MITER = 0;
/** Constant value for join style. */
public static final int JOIN_ROUND = 1;
/** Constant value for join style. */
public static final int JOIN_BEVEL = 2;
public static final int TYPE_CENTERED = 0;
public static final int TYPE_INNER = 1;
public static final int TYPE_OUTER = 2;
float width;
int type;
int cap;
int join;
float miterLimit;
float dash[];
float dashPhase;
public BasicStroke() {
set(TYPE_CENTERED, 1.0f, CAP_SQUARE, JOIN_MITER, 10f);
}
public BasicStroke(float width, int cap, int join, float miterLimit) {
set(TYPE_CENTERED, width, cap, join, miterLimit);
}
public BasicStroke(int type, float width,
int cap, int join, float miterLimit)
{
set(type, width, cap, join, miterLimit);
}
public BasicStroke(float width, int cap, int join, float miterLimit,
float[] dash, float dashPhase)
{
set(TYPE_CENTERED, width, cap, join, miterLimit);
set(dash, dashPhase);
}
public BasicStroke(float width, int cap, int join, float miterLimit,
double[] dash, float dashPhase)
{
set(TYPE_CENTERED, width, cap, join, miterLimit);
set(dash, dashPhase);
}
public BasicStroke(int type, float width, int cap, int join, float miterLimit,
float[] dash, float dashPhase)
{
set(type, width, cap, join, miterLimit);
set(dash, dashPhase);
}
public BasicStroke(int type, float width, int cap, int join, float miterLimit,
double[] dash, float dashPhase)
{
set(type, width, cap, join, miterLimit);
set(dash, dashPhase);
}
public void set(int type, float width,
int cap, int join, float miterLimit)
{
if (type != TYPE_CENTERED && type != TYPE_INNER && type != TYPE_OUTER) {
throw new IllegalArgumentException("illegal type");
}
if (width < 0.0f) {
throw new IllegalArgumentException("negative width");
}
if (cap != CAP_BUTT && cap != CAP_ROUND && cap != CAP_SQUARE) {
throw new IllegalArgumentException("illegal end cap value");
}
if (join == JOIN_MITER) {
if (miterLimit < 1.0f) {
throw new IllegalArgumentException("miter limit < 1");
}
} else if (join != JOIN_ROUND && join != JOIN_BEVEL) {
throw new IllegalArgumentException("illegal line join value");
}
this.type = type;
this.width = width;
this.cap = cap;
this.join = join;
this.miterLimit = miterLimit;
}
public void set(float dash[], float dashPhase) {
if (dash != null) {
boolean allzero = true;
for (int i = 0; i < dash.length; i++) {
float d = dash[i];
if (d > 0.0) {
allzero = false;
} else if (d < 0.0) {
throw new IllegalArgumentException("negative dash length");
}
}
if (allzero) {
throw new IllegalArgumentException("dash lengths all zero");
}
}
this.dash = dash;
this.dashPhase = dashPhase;
}
public void set(double dash[], float dashPhase) {
if (dash != null) {
float newdashes[] = new float[dash.length];
boolean allzero = true;
for (int i = 0; i < dash.length; i++) {
float d = (float) dash[i];
if (d > 0.0) {
allzero = false;
} else if (d < 0.0) {
throw new IllegalArgumentException("negative dash length");
}
newdashes[i] = d;
}
if (allzero) {
throw new IllegalArgumentException("dash lengths all zero");
}
this.dash = newdashes;
} else {
this.dash = null;
}
this.dashPhase = dashPhase;
}
/**
* Returns the stroke type, one of {@code TYPE_CENTERED},
* {@code TYPE_INNER}, or {@code TYPE_OUTER}.
* @return the stroke type
*/
public int getType() {
return type;
}
/**
* Returns the line width. Line width is represented in user space,
* which is the default-coordinate space used by Java 2D. See the
* Graphics2D
class comments for more information on
* the user space coordinate system.
* @return the line width of this BasicStroke
.
*/
public float getLineWidth() {
return width;
}
/**
* Returns the end cap style.
* @return the end cap style of this BasicStroke
as one
* of the static int
values that define possible end cap
* styles.
*/
public int getEndCap() {
return cap;
}
/**
* Returns the line join style.
* @return the line join style of the BasicStroke
as one
* of the static int
values that define possible line
* join styles.
*/
public int getLineJoin() {
return join;
}
/**
* Returns the limit of miter joins.
* @return the limit of miter joins of the BasicStroke
.
*/
public float getMiterLimit() {
return miterLimit;
}
/**
* Returns true if this stroke object will apply dashing attributes
* to the path.
* @return whether the stroke has dashes
*/
public boolean isDashed() {
return (dash != null);
}
/**
* Returns the array representing the lengths of the dash segments.
* Alternate entries in the array represent the user space lengths
* of the opaque and transparent segments of the dashes.
* As the pen moves along the outline of the Shape
* to be stroked, the user space
* distance that the pen travels is accumulated. The distance
* value is used to index into the dash array.
* The pen is opaque when its current cumulative distance maps
* to an even element of the dash array and transparent otherwise.
* @return the dash array.
*/
public float[] getDashArray() {
return dash;
}
/**
* Returns the current dash phase.
* The dash phase is a distance specified in user coordinates that
* represents an offset into the dashing pattern. In other words, the dash
* phase defines the point in the dashing pattern that will correspond to
* the beginning of the stroke.
* @return the dash phase as a float
value.
*/
public float getDashPhase() {
return dashPhase;
}
public Shape createStrokedShape(Shape s) {
Shape ret;
if (s instanceof RoundRectangle2D) {
ret = strokeRoundRectangle((RoundRectangle2D) s);
} else {
ret = null;
}
if (ret != null) {
return ret;
}
ret = createCenteredStrokedShape(s);
if (type == TYPE_INNER) {
ret = makeIntersectedShape(ret, s);
} else if (type == TYPE_OUTER) {
ret = makeSubtractedShape(ret, s);
}
return ret;
}
private boolean isCW(final float dx1, final float dy1,
final float dx2, final float dy2)
{
return dx1 * dy2 <= dy1 * dx2;
}
private void computeOffset(final float lx, final float ly,
final float w, final float[] m, int off) {
final float len = (float) Math.sqrt(lx * lx + ly * ly);
if (len == 0) {
m[off + 0] = m[off + 1] = 0;
} else {
m[off + 0] = (ly * w) / len;
m[off + 1] = -(lx * w) / len;
}
}
private void computeMiter(final float x0, final float y0,
final float x1, final float y1,
final float x0p, final float y0p,
final float x1p, final float y1p,
final float[] m, int off)
{
float x10 = x1 - x0;
float y10 = y1 - y0;
float x10p = x1p - x0p;
float y10p = y1p - y0p;
// if this is 0, the lines are parallel. If they go in the
// same direction, there is no intersection so m[off] and
// m[off+1] will contain infinity, so no miter will be drawn.
// If they go in the same direction that means that the start of the
// current segment and the end of the previous segment have the same
// tangent, in which case this method won't even be involved in
// miter drawing because it won't be called by drawMiter (because
// (mx == omx && my == omy) will be true, and drawMiter will return
// immediately).
float den = x10*y10p - x10p*y10;
float t = x10p*(y0-y0p) - y10p*(x0-x0p);
t /= den;
m[off++] = x0 + t*x10;
m[off] = y0 + t*y10;
}
// taken from com.sun.javafx.geom.Shape.accumulateQuad (added the width)
private void accumulateQuad(float bbox[], int off,
float v0, float vc, float v1, float w)
{
// Breaking this quad down into a polynomial:
// eqn[0] = v0;
// eqn[1] = vc + vc - v0 - v0;
// eqn[2] = v0 - vc - vc + v1;
// Deriving the polynomial:
// eqn'[0] = 1*eqn[1] = 2*(vc-v0)
// eqn'[1] = 2*eqn[2] = 2*((v1-vc)-(vc-v0))
// Solving for zeroes on the derivative:
// e1*t + e0 = 0
// t = -e0/e1;
// t = -2(vc-v0) / 2((v1-vc)-(vc-v0))
// t = (v0-vc) / (v1-vc+v0-vc)
float num = v0 - vc;
float den = v1 - vc + num;
if (den != 0f) {
float t = num / den;
if (t > 0 && t < 1) {
float u = 1f - t;
float v = v0 * u * u + 2 * vc * t * u + v1 * t * t;
if (bbox[off] > v - w) bbox[off] = v - w;
if (bbox[off+2] < v + w) bbox[off+2] = v + w;
}
}
}
// taken from com.sun.javafx.geom.Shape.accumulateCubic (added the width)
private void accumulateCubic(float bbox[], int off, float t,
float v0, float vc0, float vc1, float v1, float w)
{
if (t > 0 && t < 1) {
float u = 1f - t;
float v = v0 * u * u * u
+ 3 * vc0 * t * u * u
+ 3 * vc1 * t * t * u
+ v1 * t * t * t;
if (bbox[off] > v - w) bbox[off] = v - w;
if (bbox[off+2] < v + w) bbox[off+2] = v + w;
}
}
// taken from com.sun.javafx.geom.Shape.accumulateCubic (added the width)
private void accumulateCubic(float bbox[], int off,
float v0, float vc0, float vc1, float v1, float w)
{
// Breaking this cubic down into a polynomial:
// eqn[0] = v0;
// eqn[1] = (vc0 - v0) * 3f;
// eqn[2] = (vc1 - vc0 - vc0 + v0) * 3f;
// eqn[3] = v1 + (vc0 - vc1) * 3f - v0;
// Deriving the polynomial:
// eqn'[0] = 1*eqn[1] = 3(vc0-v0)
// eqn'[1] = 2*eqn[2] = 6((vc1-vc0)-(vc0-v0))
// eqn'[2] = 3*eqn[3] = 3((v1-vc1)-2(vc1-vc0)+(vc0-v0))
// Solving for zeroes on the derivative:
// e2*t*t + e1*t + e0 = a*t*t + b*t + c = 0
// Note that in solving for 0 we can divide all e0,e1,e2 by 3
// t = (-b +/- sqrt(b*b-4ac))/2a
float c = vc0 - v0;
float b = 2f * ((vc1 - vc0) - c);
float a = (v1 - vc1) - b - c;
if (a == 0f) {
// The quadratic parabola has degenerated to a line.
if (b == 0f) {
// The line has degenerated to a constant.
return;
}
accumulateCubic(bbox, off, -c/b, v0, vc0, vc1, v1, w);
} else {
// From Numerical Recipes, 5.6, Quadratic and Cubic Equations
float d = b * b - 4f * a * c;
if (d < 0f) {
// If d < 0.0, then there are no roots
return;
}
d = (float) Math.sqrt(d);
// For accuracy, calculate one root using:
// (-b +/- d) / 2a
// and the other using:
// 2c / (-b +/- d)
// Choose the sign of the +/- so that b+d gets larger in magnitude
if (b < 0f) {
d = -d;
}
float q = (b + d) / -2f;
// We already tested a for being 0 above
accumulateCubic(bbox, off, q/a, v0, vc0, vc1, v1, w);
if (q != 0f) {
accumulateCubic(bbox, off, c/q, v0, vc0, vc1, v1, w);
}
}
}
// Basically any type of transform that does not violate a uniform
// unsheared 2D scale. We may have to scale the associated line width,
// but we can accumulate everything in device space with no problems.
private static final int SAFE_ACCUMULATE_MASK =
(BaseTransform.TYPE_FLIP |
BaseTransform.TYPE_GENERAL_ROTATION |
BaseTransform.TYPE_QUADRANT_ROTATION |
BaseTransform.TYPE_TRANSLATION |
BaseTransform.TYPE_UNIFORM_SCALE);
public void accumulateShapeBounds(float bbox[], Shape shape, BaseTransform tx) {
if (type == TYPE_INNER) {
Shape.accumulate(bbox, shape, tx);
return;
}
if ((tx.getType() & ~SAFE_ACCUMULATE_MASK) != 0) {
// This is a work-around for RT-15648. That bug still applies here
// since we should be optimizing that case, but at least with this
// work-around, someone who calls this method, and is not aware of
// that bug, will not be bitten by a bad answer.
Shape.accumulate(bbox, createStrokedShape(shape), tx);
return;
}
PathIterator pi = shape.getPathIterator(tx);
boolean lastSegmentMove = true;
float coords[] = new float[6];
float w = type == TYPE_CENTERED ? getLineWidth() / 2 : getLineWidth();
// Length(Transform(w, 0)) == w * Length(Transform(1, 0))
w *= Math.hypot(tx.getMxx(), tx.getMyx());
// starting x,y; previous x0, y0 and current x1,y1
float sx = 0f, sy = 0f, x0 = 0f, y0 = 0f, x1, y1;
// starting delta x,y; delta x,y; previous delta x,y
float sdx = 0f, sdy = 0f, dx, dy, pdx = 0f, pdy = 0f;
// current offset
float o[] = new float[4];
// previous offset; starting offset
float pox = 0f, poy = 0f, sox = 0f, soy = 0f;
while (!pi.isDone()) {
int cur = pi.currentSegment(coords);
switch (cur) {
case PathIterator.SEG_MOVETO:
if (!lastSegmentMove) {
accumulateCap(pdx, pdy, x0, y0, pox, poy, bbox, w);
accumulateCap(-sdx, -sdy, sx, sy, -sox, -soy, bbox, w);
}
x0 = sx = coords[0];
y0 = sy = coords[1];
break;
case PathIterator.SEG_LINETO:
x1 = coords[0];
y1 = coords[1];
dx = x1 - x0;
dy = y1 - y0;
if (dx == 0f && dy == 0f) {
// Ideally these segments should be ignored, but both
// Java 2D and OpenPisces treat this case as if we
// were joining to a segment that was horizontal.
dx = 1f;
}
computeOffset(dx, dy, w, o, 0);
if (!lastSegmentMove) {
accumulateJoin(pdx, pdy, dx, dy, x0, y0, pox, poy, o[0], o[1], bbox, w);
}
x0 = x1;
y0 = y1;
pdx = dx;
pdy = dy;
pox = o[0];
poy = o[1];
if (lastSegmentMove) {
sdx = pdx;
sdy = pdy;
sox = pox;
soy = poy;
}
break;
case PathIterator.SEG_QUADTO:
x1 = coords[2];
y1 = coords[3];
dx = coords[0] - x0;
dy = coords[1] - y0;
computeOffset(dx, dy, w, o, 0);
if (!lastSegmentMove) {
accumulateJoin(pdx, pdy, dx, dy, x0, y0, pox, poy, o[0], o[1], bbox, w);
}
if (bbox[0] > coords[0] - w || bbox[2] < coords[0] + w) {
accumulateQuad(bbox, 0, x0, coords[0], x1, w);
}
if (bbox[1] > coords[1] - w || bbox[3] < coords[1] + w) {
accumulateQuad(bbox, 1, y0, coords[1], y1, w);
}
x0 = x1;
y0 = y1;
if (lastSegmentMove) {
sdx = dx;
sdy = dy;
sox = o[0];
soy = o[1];
}
pdx = x1 - coords[0];
pdy = y1 - coords[1];
computeOffset(pdx, pdy, w, o, 0);
pox = o[0];
poy = o[1];
break;
case PathIterator.SEG_CUBICTO:
x1 = coords[4];
y1 = coords[5];
dx = coords[0] - x0;
dy = coords[1] - y0;
computeOffset(dx, dy, w, o, 0);
if (!lastSegmentMove) {
accumulateJoin(pdx, pdy, dx, dy, x0, y0, pox, poy, o[0], o[1], bbox, w);
}
if (bbox[0] > coords[0] - w || bbox[2] < coords[0] + w ||
bbox[0] > coords[2] - w || bbox[2] < coords[2] + w)
{
accumulateCubic(bbox, 0, x0, coords[0], coords[2], x1, w);
}
if (bbox[1] > coords[1] - w|| bbox[3] < coords[1] + w ||
bbox[1] > coords[3] - w|| bbox[3] < coords[3] + w)
{
accumulateCubic(bbox, 1, y0, coords[1], coords[3], y1, w);
}
x0 = x1;
y0 = y1;
if (lastSegmentMove) {
sdx = dx;
sdy = dy;
sox = o[0];
soy = o[1];
}
pdx = x1 - coords[2];
pdy = y1 - coords[3];
computeOffset(pdx, pdy, w, o, 0);
pox = o[0];
poy = o[1];
break;
case PathIterator.SEG_CLOSE:
dx = sx - x0;
dy = sy - y0;
x1 = sx;
y1 = sy;
if (!lastSegmentMove) {
computeOffset(sdx, sdy, w, o, 2);
if (dx == 0 && dy == 0) {
accumulateJoin(pdx, pdy, sdx, sdy, sx, sy, pox, poy, o[2], o[3], bbox, w);
} else {
computeOffset(dx, dy, w, o, 0);
accumulateJoin(pdx, pdy, dx, dy, x0, y0, pox, poy, o[0], o[1], bbox, w);
accumulateJoin(dx, dy, sdx, sdy, x1, y1, o[0], o[1], o[2], o[3], bbox, w);
}
}
x0 = x1;
y0 = y1;
break;
}
// Close behaves like a move in certain ways - after close, line will draw a cap,
// like if the close implicitely did move to the original coordinates
lastSegmentMove = cur == PathIterator.SEG_MOVETO || cur == PathIterator.SEG_CLOSE;
pi.next();
}
if (!lastSegmentMove) {
accumulateCap(pdx, pdy, x0, y0, pox, poy, bbox, w);
accumulateCap(-sdx, -sdy, sx, sy, -sox, -soy, bbox, w);
}
}
private void accumulate(float o0, float o1, float o2, float o3, float[] bbox) {
if (o0 <= o2) {
if (o0 < bbox[0]) bbox[0] = o0;
if (o2 > bbox[2]) bbox[2] = o2;
} else {
if (o2 < bbox[0]) bbox[0] = o2;
if (o0 > bbox[2]) bbox[2] = o0;
}
if (o1 <= o3) {
if (o1 < bbox[1]) bbox[1] = o1;
if (o3 > bbox[3]) bbox[3] = o3;
} else {
if (o3 < bbox[1]) bbox[1] = o3;
if (o1 > bbox[3]) bbox[3] = o1;
}
}
private void accumulateOrdered(float o0, float o1, float o2, float o3, float[] bbox) {
if (o0 < bbox[0]) bbox[0] = o0;
if (o2 > bbox[2]) bbox[2] = o2;
if (o1 < bbox[1]) bbox[1] = o1;
if (o3 > bbox[3]) bbox[3] = o3;
}
private void accumulateJoin(float pdx, float pdy, float dx, float dy, float x0, float y0,
float pox, float poy, float ox, float oy, float[] bbox, float w) {
if (join == JOIN_BEVEL) {
accumulateBevel(x0, y0, pox, poy, ox, oy, bbox);
} else if (join == JOIN_MITER) {
accumulateMiter(pdx, pdy, dx, dy, pox, poy, ox, oy, x0, y0, bbox, w);
} else { // JOIN_ROUND
accumulateOrdered(x0 - w, y0 - w, x0 + w, y0 + w, bbox);
}
}
private void accumulateCap(float dx, float dy, float x0, float y0,
float ox, float oy, float[] bbox, float w) {
if (cap == CAP_SQUARE) {
accumulate(x0 + ox - oy, y0 + oy + ox, x0 - ox - oy, y0 - oy + ox, bbox);
} else if (cap == CAP_BUTT) {
accumulate(x0 + ox, y0 + oy, x0 - ox, y0 - oy, bbox);
} else { //cap == CAP_ROUND
accumulateOrdered(x0 - w, y0 - w, x0 + w, y0 + w, bbox);
}
}
private float[] tmpMiter = new float[2];
private void accumulateMiter(float pdx, float pdy, float dx, float dy,
float pox, float poy, float ox, float oy,
float x0, float y0, float[] bbox, float w) {
// Always accumulate bevel for cases of degenerate miters...
accumulateBevel(x0, y0, pox, poy, ox, oy, bbox);
boolean cw = isCW(pdx, pdy, dx, dy);
if (cw) {
pox = -pox;
poy = -poy;
ox = -ox;
oy = -oy;
}
computeMiter((x0 - pdx) + pox, (y0 - pdy) + poy, x0 + pox, y0 + poy,
(x0 + dx) + ox, (y0 + dy) + oy, x0 + ox, y0 + oy,
tmpMiter, 0);
float lenSq = (tmpMiter[0] - x0) * (tmpMiter[0] - x0) + (tmpMiter[1] - y0) * (tmpMiter[1] - y0);
float miterLimitWidth = miterLimit * w;
if (lenSq < miterLimitWidth * miterLimitWidth) {
accumulateOrdered(tmpMiter[0], tmpMiter[1], tmpMiter[0], tmpMiter[1], bbox);
}
}
private void accumulateBevel(float x0, float y0, float pox, float poy, float ox, float oy, float[] bbox) {
accumulate(x0 + pox, y0 + poy, x0 - pox, y0 - poy, bbox);
accumulate(x0 + ox, y0 + oy, x0 - ox, y0 - oy, bbox);
}
public Shape createCenteredStrokedShape(final Shape s) {
return ShapeUtil.createCenteredStrokedShape(s, this);
}
static final float SQRT_2 = (float) Math.sqrt(2);
Shape strokeRoundRectangle(RoundRectangle2D rr) {
if (rr.width < 0 || rr.height < 0) {
return new Path2D();
}
if (isDashed()) {
return null;
}
int j;
float aw = rr.arcWidth;
float ah = rr.arcHeight;
if (aw <= 0f || ah <= 0f) {
aw = ah = 0f;
if (type == TYPE_INNER) {
j = JOIN_MITER;
} else {
j = this.join;
if (j == JOIN_MITER && miterLimit < SQRT_2) {
j = JOIN_BEVEL;
}
}
} else {
if (aw < ah * 0.9f || ah < aw * 0.9f) {
// RT-27416
// TODO: Need to check these multipliers and
// optimize this case...
return null;
}
j = JOIN_ROUND;
}
float id, od;
if (type == TYPE_INNER) {
od = 0f;
id = this.width;
} else if (type == TYPE_OUTER) {
od = this.width;
id = 0f;
} else {
od = id = this.width/2f;
}
Shape outer;
switch (j) {
case JOIN_MITER:
outer = new RoundRectangle2D(rr.x - od, rr.y - od,
rr.width+od*2f, rr.height+od*2f,
0f, 0f);
break;
case JOIN_BEVEL:
outer = makeBeveledRect(rr.x, rr.y, rr.width, rr.height, od);
break;
case JOIN_ROUND:
outer = new RoundRectangle2D(rr.x - od, rr.y - od,
rr.width+od*2f, rr.height+od*2f,
aw+od*2f, ah+od*2f);
break;
default:
throw new InternalError("Unrecognized line join style");
}
if (rr.width <= id*2f || rr.height <= id*2f) {
return outer;
}
aw -= id*2f;
ah -= id*2f;
if (aw <= 0f || ah <= 0f) {
aw = ah = 0f;
}
Shape inner = new RoundRectangle2D(rr.x + id, rr.y + id,
rr.width-id*2f, rr.height-id*2f,
aw, ah);
Path2D p2d = (outer instanceof Path2D)
? ((Path2D) outer) : new Path2D(outer);
p2d.setWindingRule(Path2D.WIND_EVEN_ODD);
p2d.append(inner, false);
return p2d;
}
static Shape makeBeveledRect(float rx, float ry,
float rw, float rh,
float d)
{
float rx0 = rx;
float ry0 = ry;
float rx1 = rx + rw;
float ry1 = ry + rh;
Path2D p = new Path2D();
p.moveTo(rx0, ry0 - d);
p.lineTo(rx1, ry0 - d);
p.lineTo(rx1 + d, ry0);
p.lineTo(rx1 + d, ry1);
p.lineTo(rx1, ry1 + d);
p.lineTo(rx0, ry1 + d);
p.lineTo(rx0 - d, ry1);
p.lineTo(rx0 - d, ry0);
p.closePath();
return p;
}
protected Shape makeIntersectedShape(Shape outer, Shape inner) {
return new CAGShapePair(outer, inner, ShapePair.TYPE_INTERSECT);
}
protected Shape makeSubtractedShape(Shape outer, Shape inner) {
return new CAGShapePair(outer, inner, ShapePair.TYPE_SUBTRACT);
}
static class CAGShapePair extends GeneralShapePair {
private Shape cagshape;
public CAGShapePair(Shape outer, Shape inner, int type) {
super(outer, inner, type);
}
@Override
public PathIterator getPathIterator(BaseTransform tx) {
if (cagshape == null) {
Area o = new Area(getOuterShape());
Area i = new Area(getInnerShape());
if (getCombinationType() == ShapePair.TYPE_INTERSECT) {
o.intersect(i);
} else {
o.subtract(i);
}
cagshape = o;
}
return cagshape.getPathIterator(tx);
}
}
/**
* Returns the hashcode for this stroke.
* @return a hash code for this stroke.
*/
@Override
public int hashCode() {
int hash = Float.floatToIntBits(width);
hash = hash * 31 + join;
hash = hash * 31 + cap;
hash = hash * 31 + Float.floatToIntBits(miterLimit);
if (dash != null) {
hash = hash * 31 + Float.floatToIntBits(dashPhase);
for (int i = 0; i < dash.length; i++) {
hash = hash * 31 + Float.floatToIntBits(dash[i]);
}
}
return hash;
}
/**
* Tests if a specified object is equal to this BasicStroke
* by first testing if it is a BasicStroke
and then comparing
* its width, join, cap, miter limit, dash, and dash phase attributes with
* those of this BasicStroke
.
* @param obj the specified object to compare to this
* BasicStroke
* @return true
if the width, join, cap, miter limit, dash, and
* dash phase are the same for both objects;
* false
otherwise.
*/
@Override
public boolean equals(Object obj) {
if (!(obj instanceof BasicStroke)) {
return false;
}
BasicStroke bs = (BasicStroke) obj;
if (width != bs.width) {
return false;
}
if (join != bs.join) {
return false;
}
if (cap != bs.cap) {
return false;
}
if (miterLimit != bs.miterLimit) {
return false;
}
if (dash != null) {
if (dashPhase != bs.dashPhase) {
return false;
}
if (!java.util.Arrays.equals(dash, bs.dash)) {
return false;
}
}
else if (bs.dash != null) {
return false;
}
return true;
}
public BasicStroke copy() {
return new BasicStroke(type, width, cap, join, miterLimit, dash, dashPhase);
}
}