All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.HopcroftKarpBipartiteMatching Maven / Gradle / Ivy

/*
 * (C) Copyright 2012-2016, by Joris Kinable and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * This program and the accompanying materials are dual-licensed under
 * either
 *
 * (a) the terms of the GNU Lesser General Public License version 2.1
 * as published by the Free Software Foundation, or (at your option) any
 * later version.
 *
 * or (per the licensee's choosing)
 *
 * (b) the terms of the Eclipse Public License v1.0 as published by
 * the Eclipse Foundation.
 */
package org.jgrapht.alg;

import java.util.*;

import org.jgrapht.*;
import org.jgrapht.alg.interfaces.*;
import org.jgrapht.graph.*;

/**
 * This class is an implementation of the Hopcroft-Karp algorithm which finds a maximum matching in
 * an undirected simple bipartite graph. The algorithm runs in O(|E|*√|V|) time. The original
 * algorithm is described in: Hopcroft, John E.; Karp, Richard M. (1973), "An n5/2 algorithm for
 * maximum matchings in bipartite graphs", SIAM Journal on Computing 2 (4): 225–231,
 * doi:10.1137/0202019 A coarse overview of the algorithm is given in:
 * http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm Note: the behavior of this class is
 * undefined when the input isn't a bipartite graph, i.e. when there are edges within a single
 * partition!
 *
 * @param  the graph vertex type
 * @param  the graph edge type
 *
 * @author Joris Kinable
 */

public class HopcroftKarpBipartiteMatching
    implements MatchingAlgorithm
{
    private final UndirectedGraph graph;
    private final Set partition1; // Partitions of bipartite graph
    private final Set partition2;
    private Set matching; // Set containing the matchings

    private final Set unmatchedVertices1; // Set which contains the unmatched
                                             // vertices in partition 1
    private final Set unmatchedVertices2;

    /**
     * Create a new instance of the Hopcroft-Karp algorithm for the computation of maximum matchings
     * in bipartite graphs.
     * 
     * @param graph the input graph
     * @param partition1 vertex set of one of the partitions of the bipartite graph
     * @param partition2 vertex set of the other partition of the bipartite graph
     */
    public HopcroftKarpBipartiteMatching(
        UndirectedGraph graph, Set partition1, Set partition2)
    {
        this.graph = graph;
        this.partition1 = partition1;
        this.partition2 = partition2;
        matching = new HashSet<>();

        unmatchedVertices1 = new HashSet<>(partition1);
        unmatchedVertices2 = new HashSet<>(partition2);

        assert this.checkInputData();
        this.maxMatching();
    }

    /**
     * Checks whether the input data meets the requirements: simple undirected graph and bipartite
     * partitions.
     */
    private boolean checkInputData()
    {
        if (graph instanceof Multigraph) {
            throw new IllegalArgumentException(
                "Multi graphs are not allowed as input, only simple graphs!");
        }

        // Test the bipartite-ness
        Set neighborsSet1 = new HashSet<>();
        for (V v : partition1) {
            neighborsSet1.addAll(Graphs.neighborListOf(graph, v));
        }
        if (interSectionNotEmpty(partition1, neighborsSet1)) {
            throw new IllegalArgumentException(
                "There are edges within partition 1, i.e. not a bipartite graph");
        }
        Set neighborsSet2 = new HashSet<>();
        for (V v : partition2) {
            neighborsSet2.addAll(Graphs.neighborListOf(graph, v));
        }
        if (interSectionNotEmpty(partition2, neighborsSet2)) {
            throw new IllegalArgumentException(
                "There are edges within partition 2, i.e. not a bipartite graph");
        }
        return true;
    }

    /**
     * Greedily match the vertices in partition1 to the vertices in partition2. For each vertex in
     * partition 1, check whether there is an edge to an unmatched vertex in partition 2. If so, add
     * the edge to the matching.
     */
    private void greedyMatch()
    {
        HashSet usedVertices = new HashSet<>();

        for (V vertex1 : partition1) {
            for (V vertex2 : Graphs.neighborListOf(graph, vertex1)) {
                if (!usedVertices.contains(vertex2)) {
                    usedVertices.add(vertex2);
                    unmatchedVertices1.remove(vertex1);
                    unmatchedVertices2.remove(vertex2);
                    matching.add(graph.getEdge(vertex1, vertex2));
                    break;
                }
            }
        }
    }

    /**
     * This method is the main method of the class. First it finds a greedy matching. Next it tries
     * to improve the matching by finding all the augmenting paths. This leads to a maximum
     * matching.
     */
    private void maxMatching()
    {
        this.greedyMatch();

        List> augmentingPaths = this.getAugmentingPaths(); // Get a list with
                                                                         // augmenting paths
        while (!augmentingPaths.isEmpty()) {
            for (Iterator> it = augmentingPaths.iterator(); it.hasNext();) { // Process
                                                                                           // all
                                                                                           // augmenting
                                                                                           // paths
                LinkedList augmentingPath = it.next();
                unmatchedVertices1.remove(augmentingPath.getFirst());
                unmatchedVertices2.remove(augmentingPath.getLast());
                this.symmetricDifference(augmentingPath);
                it.remove();
            }
            augmentingPaths.addAll(this.getAugmentingPaths()); // Check whether there are new
                                                               // augmenting paths available
        }
    }

    /**
     * Given are the current matching and a new augmenting path p. p.getFirst() and p.getLast() are
     * newly matched vertices. This method updates the edges which are part of the existing matching
     * with the new augmenting path. As a result, the size of the matching increases with 1.
     *
     * @param augmentingPath
     */
    private void symmetricDifference(LinkedList augmentingPath)
    {
        int operation = 0;

        // The augmenting path alternatingly has an edge which is not part of the
        // matching, and an edge which is part of the matching. Edges which are
        // already part of the matching are removed, the others are added.
        while (augmentingPath.size() > 1) {
            E edge = graph.getEdge(augmentingPath.poll(), augmentingPath.peek());
            if ((operation % 2) == 0) {
                matching.add(edge);
            } else {
                matching.remove(edge);
            }
            operation++;
        }
    }

    private List> getAugmentingPaths()
    {
        List> augmentingPaths = new ArrayList<>();

        // 1. Build data structure
        Map> layeredMap = new HashMap<>();
        for (V vertex : unmatchedVertices1) {
            layeredMap.put(vertex, new HashSet<>());
        }

        Set oddLayer = new HashSet<>(unmatchedVertices1); // Layer L0 contains the
                                                             // unmatchedVertices1.
        Set evenLayer;
        Set usedVertices = new HashSet<>(unmatchedVertices1);

        while (true) {
            // Create a new even Layer A new layer can ONLY contain vertices
            // which are not used in the previous layers Edges between odd and
            // even layers can NOT be part of the matching
            evenLayer = new HashSet<>();
            for (V vertex : oddLayer) {
                // List neighbors=this.getNeighbors(vertex);
                List neighbors = Graphs.neighborListOf(graph, vertex);
                for (V neighbor : neighbors) {
                    if (!usedVertices.contains(neighbor)) {
                        evenLayer.add(neighbor);
                        if (!layeredMap.containsKey(neighbor)) {
                            layeredMap.put(neighbor, new HashSet());
                        }
                        layeredMap.get(neighbor).add(vertex);
                    } // else{
                      // Vertices placed into odd-layer may not be matched by
                      // any other vertices except for the one we came from
                      // 
                      // }
                }
            }
            usedVertices.addAll(evenLayer);

            // Check whether we are finished generating layers. We are finished
            // if 1. the last layer is empty or 2. if we reached free vertices
            // in partition2.
            if ((evenLayer.size() == 0)
                || this.interSectionNotEmpty(evenLayer, unmatchedVertices2))
            {
                break;
            }

            // Create a new odd Layer A new layer can ONLY contain vertices which
            // are not used in the previous layers Edges between EVEN and ODD
            // layers SHOULD be part of the matching
            oddLayer = new HashSet<>();
            for (V vertex : evenLayer) {
                List neighbors = Graphs.neighborListOf(graph, vertex);
                for (V neighbor : neighbors) {
                    if (usedVertices.contains(neighbor)
                        || !matching.contains(graph.getEdge(vertex, neighbor)))
                    {
                        continue;
                    } else {
                        oddLayer.add(neighbor);
                        if (!layeredMap.containsKey(neighbor)) {
                            layeredMap.put(neighbor, new HashSet<>());
                        }
                        layeredMap.get(neighbor).add(vertex);
                    }
                }
            }
            usedVertices.addAll(oddLayer);
        }

        // Check whether there exist augmenting paths. If not, return an empty
        // list. Else, we need to generate the augmenting paths which start at
        // free vertices in the even layer and end at the free vertices at the
        // first odd layer (L0).
        if (evenLayer.size() == 0) {
            return augmentingPaths;
        } else {
            evenLayer.retainAll(unmatchedVertices2);
        }

        // Finally, do a depth-first search, starting on the free vertices in the
        // last even layer. Objective is to find as many vertex disjoint paths
        // as possible.
        for (V vertex : evenLayer) {
            // Calculate an augmenting path, starting at the given vertex.
            LinkedList augmentingPath = dfs(vertex, layeredMap);

            // If the augmenting path exists, add it to the list of paths and
            // remove the vertices from the map to enforce that the paths are
            // vertex disjoint, i.e. a vertex cannot occur in more than 1 path.
            if (augmentingPath != null) {
                augmentingPaths.add(augmentingPath);
                for (V augmentingVertex : augmentingPath) {
                    layeredMap.remove(augmentingVertex);
                }
            }
        }

        return augmentingPaths;
    }

    private LinkedList dfs(V startVertex, Map> layeredMap)
    {
        if (!layeredMap.containsKey(startVertex)) {
            return null;
        } else if (unmatchedVertices1.contains(startVertex)) {
            LinkedList list = new LinkedList<>();
            list.add(startVertex);
            return list;
        } else {
            LinkedList partialPath = null;
            for (V vertex : layeredMap.get(startVertex)) {
                partialPath = dfs(vertex, layeredMap);
                if (partialPath != null) {
                    partialPath.add(startVertex);
                    break;
                }
            }
            return partialPath;
        }
    }

    /**
     * Helper method which checks whether the intersection of 2 sets is empty.
     *
     * @param vertexSet1
     * @param vertexSet2
     *
     * @return true if the intersection is NOT empty.
     */
    private boolean interSectionNotEmpty(Set vertexSet1, Set vertexSet2)
    {
        for (V vertex : vertexSet1) {
            if (vertexSet2.contains(vertex)) {
                return true;
            }
        }
        return false;
    }

    @Override
    public Set getMatching()
    {
        return Collections.unmodifiableSet(matching);
    }
}

// End HopcroftKarpBipartiteMatching.java




© 2015 - 2025 Weber Informatics LLC | Privacy Policy