All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.util.FibonacciHeap Maven / Gradle / Ivy

There is a newer version: 1.5.2
Show newest version
/*
 * (C) Copyright 1999-2018, by Nathan Fiedler and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * This program and the accompanying materials are dual-licensed under
 * either
 *
 * (a) the terms of the GNU Lesser General Public License version 2.1
 * as published by the Free Software Foundation, or (at your option) any
 * later version.
 *
 * or (per the licensee's choosing)
 *
 * (b) the terms of the Eclipse Public License v1.0 as published by
 * the Eclipse Foundation.
 */
package org.jgrapht.util;

import java.util.*;

/**
 * This class implements a Fibonacci heap data structure. Much of the code in this class is based on
 * the algorithms in the "Introduction to Algorithms" by Cormen, Leiserson, and Rivest in Chapter
 * 21. The amortized running time of most of these methods is $O(1)$, making it a very fast data
 * structure. Several have an actual running time of $O(1)$. removeMin() and delete() have $O(log
 * n)$ amortized running times because they do the heap consolidation. If you attempt to store nodes
 * in this heap with key values of -Infinity (Double.NEGATIVE_INFINITY) the delete()
 * operation may fail to remove the correct element.
 *
 * 

* Note that this implementation is not synchronized. If multiple threads access a set * concurrently, and at least one of the threads modifies the set, it must be synchronized * externally. This is typically accomplished by synchronizing on some object that naturally * encapsulates the set. *

* *

* This class was originally developed by Nathan Fiedler for the GraphMaker project. It was imported * to JGraphT with permission, courtesy of Nathan Fiedler. *

* * @param node data type * * @author Nathan Fiedler */ public class FibonacciHeap { private static final double ONEOVERLOGPHI = 1.0 / Math.log((1.0 + Math.sqrt(5.0)) / 2.0); /** * Points to the minimum node in the heap. */ private FibonacciHeapNode minNode; /** * Number of nodes in the heap. */ private int nNodes; /** * Constructs a FibonacciHeap object that contains no elements. */ public FibonacciHeap() { } // FibonacciHeap /** * Tests if the Fibonacci heap is empty or not. Returns true if the heap is empty, false * otherwise. * *

* Running time: $O(1)$ actual *

* * @return true if the heap is empty, false otherwise */ public boolean isEmpty() { return minNode == null; } // isEmpty /** * Removes all elements from this heap. */ public void clear() { minNode = null; nNodes = 0; } // clear /** * Decreases the key value for a heap node, given the new value to take on. The structure of the * heap may be changed and will not be consolidated. * *

* Running time: $O(1)$ amortized *

* * @param x node to decrease the key of * @param k new key value for node x * * @exception IllegalArgumentException Thrown if $k$ is larger than x.key value. */ public void decreaseKey(FibonacciHeapNode x, double k) { if (k > x.key) { throw new IllegalArgumentException( "decreaseKey() got larger key value. Current key: " + x.key + " new key: " + k); } if (x.right == null) { throw new IllegalArgumentException("Invalid heap node"); } x.key = k; FibonacciHeapNode y = x.parent; if ((y != null) && (x.key < y.key)) { cut(x, y); cascadingCut(y); } if (x.key < minNode.key) { minNode = x; } } // decreaseKey /** * Deletes a node from the heap given the reference to the node. The trees in the heap will be * consolidated, if necessary. This operation may fail to remove the correct element if there * are nodes with key value $-\infty$. * *

* Running time: $O(\log n)$ amortized *

* * @param x node to remove from heap */ public void delete(FibonacciHeapNode x) { // make x as small as possible decreaseKey(x, Double.NEGATIVE_INFINITY); // remove the smallest, which decreases n also removeMin(); } // delete /** * Inserts a new data element into the heap. No heap consolidation is performed at this time, * the new node is simply inserted into the root list of this heap. * *

* Running time: $O(1)$ actual *

* * @param node new node to insert into heap * @param key key value associated with data object * @throws IllegalArgumentException if the node already belongs to a heap */ public void insert(FibonacciHeapNode node, double key) { if (node.right != null) { throw new IllegalArgumentException("Invalid heap node"); } node.key = key; // concatenate node into min list if (minNode != null) { node.left = minNode; node.right = minNode.right; minNode.right = node; node.right.left = node; if (key < minNode.key) { minNode = node; } } else { node.left = node; node.right = node; minNode = node; } nNodes++; } // insert /** * Returns the smallest element in the heap. This smallest element is the one with the minimum * key value. * *

* Running time: $O(1)$ actual *

* * @return heap node with the smallest key */ public FibonacciHeapNode min() { return minNode; } // min /** * Removes the smallest element from the heap. This will cause the trees in the heap to be * consolidated, if necessary. * *

* Running time: $O(\log n)$ amortized *

* * @return node with the smallest key */ public FibonacciHeapNode removeMin() { FibonacciHeapNode z = minNode; if (z != null) { int numKids = z.degree; FibonacciHeapNode x = z.child; FibonacciHeapNode tempRight; // for each child of z do... while (numKids > 0) { tempRight = x.right; // remove x from child list x.left.right = x.right; x.right.left = x.left; // add x to root list of heap x.left = minNode; x.right = minNode.right; minNode.right = x; x.right.left = x; // set parent[x] to null x.parent = null; x = tempRight; numKids--; } // remove z from root list of heap z.left.right = z.right; z.right.left = z.left; if (z == z.right) { minNode = null; } else { minNode = z.right; consolidate(); } // decrement size of heap nNodes--; // clear z z.left = null; z.right = null; z.degree = 0; z.child = null; z.mark = false; } return z; } // removeMin /** * Returns the size of the heap which is measured in the number of elements contained in the * heap. * *

* Running time: $O(1)$ actual *

* * @return number of elements in the heap */ public int size() { return nNodes; } // size /** * Joins two Fibonacci heaps into a new one. No heap consolidation is performed at this time. * The two root lists are simply joined together. * *

* Running time: $O(1)$ actual *

* * @param h1 first heap * @param h2 second heap * @param type of data stored in the heap * * @return new heap containing h1 and h2 */ public static FibonacciHeap union(FibonacciHeap h1, FibonacciHeap h2) { FibonacciHeap h = new FibonacciHeap<>(); if ((h1 != null) && (h2 != null)) { h.minNode = h1.minNode; if (h.minNode != null) { if (h2.minNode != null) { h.minNode.right.left = h2.minNode.left; h2.minNode.left.right = h.minNode.right; h.minNode.right = h2.minNode; h2.minNode.left = h.minNode; if (h2.minNode.key < h1.minNode.key) { h.minNode = h2.minNode; } } } else { h.minNode = h2.minNode; } h.nNodes = h1.nNodes + h2.nNodes; } return h; } // union /** * Creates a String representation of this Fibonacci heap. * * @return String of this. */ @Override public String toString() { if (minNode == null) { return "FibonacciHeap=[]"; } // create a new stack and put root on it Deque> stack = new ArrayDeque<>(); stack.push(minNode); StringBuilder buf = new StringBuilder(512); buf.append("FibonacciHeap=["); // do a simple breadth-first traversal on the tree while (!stack.isEmpty()) { FibonacciHeapNode curr = stack.pop(); buf.append(curr); buf.append(", "); if (curr.child != null) { stack.push(curr.child); } FibonacciHeapNode start = curr; curr = curr.right; while (curr != start) { buf.append(curr); buf.append(", "); if (curr.child != null) { stack.push(curr.child); } curr = curr.right; } } buf.append(']'); return buf.toString(); } // toString /** * Performs a cascading cut operation. This cuts y from its parent and then does the same for * its parent, and so on up the tree. * *

* Running time: $O(\log n)$; $O(1)$ excluding the recursion *

* * @param y node to perform cascading cut on */ protected void cascadingCut(FibonacciHeapNode y) { FibonacciHeapNode z = y.parent; // if there's a parent... if (z != null) { // if y is unmarked, set it marked if (!y.mark) { y.mark = true; } else { // it's marked, cut it from parent cut(y, z); // cut its parent as well cascadingCut(z); } } } // cascadingCut /** * Consolidate trees */ protected void consolidate() { int arraySize = ((int) Math.floor(Math.log(nNodes) * ONEOVERLOGPHI)) + 1; List> array = new ArrayList<>(arraySize); // Initialize degree array for (int i = 0; i < arraySize; i++) { array.add(null); } // Find the number of root nodes. int numRoots = 0; FibonacciHeapNode x = minNode; if (x != null) { numRoots++; x = x.right; while (x != minNode) { numRoots++; x = x.right; } } // For each node in root list do... while (numRoots > 0) { // Access this node's degree.. int d = x.degree; FibonacciHeapNode next = x.right; // ..and see if there's another of the same degree. for (;;) { FibonacciHeapNode y = array.get(d); if (y == null) { // Nope. break; } // There is, make one of the nodes a child of the other. // Do this based on the key value. if (x.key > y.key) { FibonacciHeapNode temp = y; y = x; x = temp; } // FibonacciHeapNode y disappears from root list. link(y, x); // We've handled this degree, go to next one. array.set(d, null); d++; } // Save this node for later when we might encounter another // of the same degree. array.set(d, x); // Move forward through list. x = next; numRoots--; } // Set min to null (effectively losing the root list) and // reconstruct the root list from the array entries in array[]. minNode = null; for (int i = 0; i < arraySize; i++) { FibonacciHeapNode y = array.get(i); if (y == null) { continue; } // We've got a live one, add it to root list. if (minNode != null) { // First remove node from root list. y.left.right = y.right; y.right.left = y.left; // Now add to root list, again. y.left = minNode; y.right = minNode.right; minNode.right = y; y.right.left = y; // Check if this is a new min. if (y.key < minNode.key) { minNode = y; } } else { minNode = y; } } } // consolidate /** * The reverse of the link operation: removes $x$ from the child list of $y$. This method * assumes that min is non-null. * *

* Running time: $O(1)$ *

* * @param x child of $y$ to be removed from $y$'s child list * @param y parent of $x$ about to lose a child */ protected void cut(FibonacciHeapNode x, FibonacciHeapNode y) { // remove x from childlist of y and decrement degree[y] x.left.right = x.right; x.right.left = x.left; y.degree--; // reset y.child if necessary if (y.child == x) { y.child = x.right; } if (y.degree == 0) { y.child = null; } // add x to root list of heap x.left = minNode; x.right = minNode.right; minNode.right = x; x.right.left = x; // set parent[x] to nil x.parent = null; // set mark[x] to false x.mark = false; } // cut /** * Make node $y$ a child of node $x$. * *

* Running time: $O(1)$ actual *

* * @param y node to become child * @param x node to become parent */ protected void link(FibonacciHeapNode y, FibonacciHeapNode x) { // remove y from root list of heap y.left.right = y.right; y.right.left = y.left; // make y a child of x y.parent = x; if (x.child == null) { x.child = y; y.right = y; y.left = y; } else { y.left = x.child; y.right = x.child.right; x.child.right = y; y.right.left = y; } // increase degree[x] x.degree++; // set mark[y] false y.mark = false; } // link } // FibonacciHeap




© 2015 - 2025 Weber Informatics LLC | Privacy Policy