ngmf.util.cosu.Fast Maven / Gradle / Ivy
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package ngmf.util.cosu;
import java.util.Arrays;
/**
*
* @author joy,od
*/
public class Fast {
public static void main(String[] args) {
// FAST operation and external model parameters
int N = 2500; // number of samples
double M = 4; // number of terms in the partial variances summation
int npar = 4; // number of parameters
double LB[] = {1, 0, 0, 0};
double UB[] = {2, 1, 1, 1};
// Add warning if N is less than minimum required realizations
if (N < 2000) {
throw new RuntimeException("The number of realizations is less than 2000.");
}
double wi = Math.floor(N / (2 * M));
double m2 = Math.floor(wi / (2 * M));
double r = Math.floor((m2) / npar);
double[] w = new double[npar];
if (r < 1) {
for (int i = 0; i <= npar - 1; i++) {
w[i] = 1;
}
} else {
double t = Math.floor(m2 / npar);
w[0] = 1;
for (int i = 1; i <= npar - 1; i++) {
w[i] = 1 + i * t;
}
}
int k1 = 0;
double[][] w2 = new double[npar][w.length];
for (int i = 0; i <= npar - 1; i++) {
for (int j = 0; j <= w.length - 1; j++) {
if (j == k1) {
w2[i][j] = wi;
} else {
w2[i][j] = w[j];
}
}
k1++;
}
double inc = 2 * Math.PI / N;
double[] s = new double[N];
s[0] = -Math.PI;
for (int i = 1; i < s.length; i++) {
s[i] = s[i - 1] + inc;
}
double[][] x = new double[N][npar];
double[] y = new double[N];
double[] V = new double[npar];
double[] VT = new double[npar];
double[] Ak = new double[(int) Math.floor((N - 1) / 2)];
double[] Bk = new double[(int) Math.floor((N - 1) / 2)];
double[] S_par = new double[npar];
double[] Vex = new double[npar];
double[] Sex_par = new double[npar];
// System.out.println((int) Math.floor((N - 1) / 2));
// System.out.println((N - 1) / 2);
for (int h = 0; h <= npar - 1; h++) {
// Compute realizations
for (int j = 0; j <= N - 1; j++) {
for (int i = 0; i <= npar - 1; i++) {
double p = 0.5 + Math.asin(Math.sin(w2[h][i] * s[j])) / Math.PI;
p = (double) Math.round(p * 10000) / 10000;
x[j][i] = p * (UB[i] - LB[i]) + LB[i];
}
y[j] = run_model(x[j][0], x[j][1], x[j][2], x[j][3]);
}
// Compute total variance
V[h] = 0;
for (int k = 1; k <= ((N - 1) / 2); k++) {
double A = 0, B = 0;
for (int j = 0; j <= N - 1; j++) {
if (j == 0) {
A = y[j] * Math.cos(s[j] * k);
B = y[j] * Math.sin(s[j] * k);
} else {
A += y[j] * Math.cos(s[j] * k); //#ok
B += y[j] * Math.sin(s[j] * k); //#ok
}
A = (double) Math.round(A * 10000) / 10000;
B = (double) Math.round(B * 10000) / 10000;
}
Ak[k - 1] = A * 2 / N;
Bk[k - 1] = B * 2 / N;
V[h] = V[h] + Math.pow((A * 2 / N), 2) + Math.pow((B * 2 / N), 2);
V[h] = (double) Math.round(V[h] * 10000) / 10000;
}
VT[h] = V[h] / 2;
//Compute partial variance
V[h] = 0;
for (int q = 1; q <= M; q++) {
V[h] = V[h] + Math.pow(Ak[(int) (q * w2[h][h]) - 1], 2)
+ Math.pow(Bk[(int) (q * w2[h][h]) - 1], 2);
V[h] = (double) Math.round(V[h] * 10000) / 10000;
}
V[h] = V[h] / 2;
S_par[h] = V[h] / VT[h];
S_par[h] = (double) Math.round(S_par[h] * 1000000) / 1000000;
//Compute Extended partial variance
Vex[h] = 0;
for (int q = 1; q <= M; q++) {
for (int c = 0; c <= npar - 1; c++) {
if (c != h) {
Vex[h] = Vex[h] + Math.pow(Ak[(int) (q * w2[h][c]) - 1], 2)
+ Math.pow(Bk[(int) (q * w2[h][c]) - 1], 2);
Vex[h] = (double) Math.round(Vex[h] * 10000) / 10000;
}
}
}
Vex[h] /= 2;
Sex_par[h] = (1 - Vex[h] / VT[h]);
Sex_par[h] = (double) Math.round(Sex_par[h] * 1000000) / 1000000;
}
//print out S values
System.out.println("S =" + Arrays.toString(S_par));
System.out.println("ST =" + Arrays.toString(Sex_par));
}
static double run_model(double x1, double x2, double x3, double x4) {
double y = x1 * x2 + x3 + x4;
return y;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy