ngmf.util.cosu.SCE Maven / Gradle / Ivy
package ngmf.util.cosu;
import java.io.PrintWriter;
import java.util.*;
import java.util.Arrays;
import java.util.Random;
import java.util.Arrays.*;
/**
*
* @author Christian Fischer, based on the original MatLab sources
* from SAHRA Tuscon Arizona
*/
public class SCE {
public String parameterIDs;
public String boundaries;
public String effMethodName;
public double[] prediction;
public double[] observation;
public int MaximizeEff;
public int NumberOfComplexes;
public int maxn;
public int kstop;
public double pcento;
public double peps;
public boolean enable;
public String sceFileName;
double[] parameters;
String[] parameterNames;
double[] lowBound;
double[] upBound;
int currentCount;
Random generator = new Random();
PrintWriter writer;
static class SCE_Comparator implements Comparator {
int col = 0;
int order = 1;
SCE_Comparator(int col, boolean decreasing_order) {
this.col = col;
if (decreasing_order) {
order = -1;
} else {
order = 1;
}
}
@Override
public int compare(double[] b1, double[] b2) {
if (b1[col] < b2[col]) {
return -1 * order;
} else if (b1[col] == b2[col]) {
return 0 * order;
} else {
return 1 * order;
}
}
}
int N; //parameter dimension
int p; //number of complexes
int s; //population size
int m; //complex size; floor(s/q)
int icall = 0;
public void init() {
// //initialising output file
// writer = new GenericDataWriter(getModel().getWorkspaceDirectory().getPath() + "/" + sceFileName.getValue());
// writer.addComment("SCE output");
// for (int p = 0; p < this.parameterNames.length; p++) {
// writer.addColumn(this.parameterNames[p]);
// }
// writer.addColumn(this.effMethodName.getValue());
// writer.addColumn("model runs");
// writer.writeHeader();
// writer.flush();
}
public double custom_rand() {
return generator.nextDouble();
}
private double[] randomSampler() {
int paras = parameterNames.length;
double[] sample = new double[paras];
for (int i = 0; i < paras; i++) {
double d = custom_rand();
sample[i] = (lowBound[i] + d * (upBound[i] - lowBound[i]));
}
return sample;
}
private boolean IsSampleValid(double[] sample) {
int paras = parameterNames.length;
for (int i = 0; i < paras; i++) {
if (sample[i] < lowBound[i] || sample[i] > upBound[i]) {
return false;
}
}
return true;
}
public double funct(double x[]) {
for (int j = 0; j < parameters.length; j++) {
parameters[j] = x[j];
}
//model run
// singleRun();
currentCount++;
//getting rid of pairs which contain missing data values
double[] preArr = prediction;
double[] obsArr = observation;
Vector obsVector = new Vector();
Vector preVector = new Vector();
for (int i = 0; i < preArr.length; i++) {
//consider valid values only
if (preArr[i] > -9999 && obsArr[i] > -9999) {
obsVector.add(obsArr[i]);
preVector.add(preArr[i]);
}
}
int dataCount = obsVector.size();
obsArr = new double[dataCount];
preArr = new double[dataCount];
//converting Vectors to arrays
for (int i = 0; i < dataCount; i++) {
obsArr[i] = obsVector.get(i).doubleValue();
preArr[i] = preVector.get(i).doubleValue();
}
//efficiency calculation
if (effMethodName.equals("e2")) {
return (-1 * Efficiencies.nashSutcliffe(preArr, obsArr, 2));
} else if (effMethodName.equals("e1")) {
return (-1 * Efficiencies.nashSutcliffe(preArr, obsArr, 1));
} else if (effMethodName.equals("le2")) {
return (-1 * Efficiencies.nashSutcliffeLog(obsArr, preArr, 2));
} else if (effMethodName.equals("pbias")) {
return (Math.abs(Efficiencies.pbias(obsArr, preArr)));
} else {
return -9999;
}
}
public void sort(double x[][], double xf[]) {
if (x.length == 0) {
return;
}
int n = x[0].length;
double t[][] = new double[x.length][n + 1];
for (int i = 0; i < x.length; i++) {
for (int j = 0; j < n; j++) {
t[i][j] = x[i][j];
}
t[i][n] = xf[i];
}
SCE_Comparator comparator = new SCE_Comparator(n, false);
Arrays.sort(t, comparator);
for (int i = 0; i < x.length; i++) {
for (int j = 0; j < n; j++) {
x[i][j] = t[i][j];
}
xf[i] = t[i][n];
}
}
public void sort(int x[]) {
Arrays.sort(x);
}
public double normalizedgeometricRange(double x[][], double bound[]) {
if (x.length == 0) {
return 0;
}
int n = x[0].length;
double min[] = new double[n];
double max[] = new double[n];
double mean = 0;
for (int i = 0; i < n; i++) {
min[i] = Double.POSITIVE_INFINITY;
max[i] = Double.NEGATIVE_INFINITY;
for (int j = 0; j < x.length; j++) {
if (x[j][i] < min[i]) {
min[i] = x[j][i];
}
if (x[j][i] > max[i]) {
max[i] = x[j][i];
}
}
mean += Math.log(max[i] - min[i]) / bound[i];
}
mean /= n;
return Math.exp(mean);
}
public double[] std(double x[][]) {
if (x.length <= 1) {
return null;
}
int n = x[0].length;
double mean[] = new double[n];
double var[] = new double[n];
for (int i = 0; i < n; i++) {
mean[i] = 0;
for (int j = 0; j < x.length; j++) {
mean[i] += x[j][i];
}
mean[i] /= n;
}
for (int i = 0; i < n; i++) {
var[i] = 0;
for (int j = 0; j < x.length; j++) {
var[i] += (mean[i] - x[j][i]) * (mean[i] - x[j][i]);
}
var[i] = Math.sqrt(var[i]) / (n - 1);
}
return var;
}
public int find(int lcs[], int startindex, int endindex, int value) {
for (int i = startindex; i < endindex; i++) {
if (lcs[i] == value) {
return i;
}
}
return -1;
}
//s forms the simplex
//sf function values of simplex
//bl lower bound,
// bu upper bound
public double[] cceua(double s[][], double sf[], double bl[], double bu[]) {
int nps = s.length;
int nopt = s[0].length;
int n = nps;
int m = nopt;
double alpha = 1.0;
double beta = 0.5;
// Assign the best and worst points:
double sb[] = new double[nopt];
double sw[] = new double[nopt];
double fb = sf[0];
double fw = sf[n - 1];
for (int i = 0; i < nopt; i++) {
sb[i] = s[0][i];
sw[i] = s[n - 1][i];
}
// Compute the centroid of the simplex excluding the worst point:
double ce[] = new double[nopt];
for (int i = 0; i < nopt; i++) {
ce[i] = 0;
for (int j = 0; j < n - 1; j++) {
ce[i] += s[j][i];
}
ce[i] /= (n - 1);
}
// Attempt a reflection point
double snew[] = new double[nopt];
for (int i = 0; i < nopt; i++) {
snew[i] = ce[i] + alpha * (ce[i] - sw[i]);
}
// Check if is outside the bounds:
int ibound = 0;
for (int i = 0; i < nopt; i++) {
if ((snew[i] - bl[i]) < 0) {
ibound = 1;
}
if ((bu[i] - snew[i]) < 0) {
ibound = 2;
}
}
if (ibound >= 1) {
snew = randomSampler();
}
double fnew = funct(snew);
// Reflection failed; now attempt a contraction point:
if (fnew > fw) {
for (int i = 0; i < nopt; i++) {
snew[i] = sw[i] + beta * (ce[i] - sw[i]);
}
fnew = funct(snew);
}
// Both reflection and contraction have failed, attempt a random point;
if (fnew > fw) {
snew = randomSampler();
fnew = funct(snew);
}
double result[] = new double[nopt + 1];
for (int i = 0; i < nopt; i++) {
result[i] = snew[i];
}
result[nopt] = fnew;
return result;
}
public double[] sceua(double[] x0, double[] bl, double[] bu, int maxn,
int kstop, double pcento, double peps, int ngs, int iseed, int iniflg) {
int nopt = x0.length;
int npg = 2 * nopt + 1;
int nps = nopt + 1;
int nspl = npg;
int mings = ngs;
int npt = npg * ngs;
double bound[] = new double[nopt];
for (int i = 0; i < nopt; i++) {
bound[i] = bu[i] - bl[i];
}
// Create an initial population to fill array x(npt,nopt):
//this.generator.setSeed(iseed);
double x[][] = new double[npt][nopt];
for (int i = 0; i < npt; i++) {
x[i] = randomSampler();
}
if (iniflg == 1) {
x[0] = x0;
}
int nloop = 0;
double xf[] = new double[npt];
for (int i = 0; i < npt; i++) {
xf[i] = funct(x[i]);
}
double f0 = xf[0];
// Sort the population in order of increasing function values;
sort(x, xf);
// Record the best and worst points;
double bestx[] = new double[nopt];
double worstx[] = new double[nopt];
double bestf, worstf;
for (int i = 0; i < nopt; i++) {
bestx[i] = x[0][i];
worstx[i] = x[npt - 1][i];
}
bestf = xf[0];
worstf = xf[npt - 1];
// Compute the standard deviation for each parameter
double xnstd[] = std(x);
// Computes the normalized geometric range of the parameters
double gnrng = normalizedgeometricRange(x, bound); //exp(mean(log((max(x)-min(x))./bound)));
System.out.println("The Inital Loop: 0");
System.out.println("BestF: " + bestf);
System.out.print("BestX");
//writer.writeLine("The Inital Loop: 0");
//writer.writeLine("BestF: " + bestf);
//writer.writeLine("BestX");
for (int i = 0; i < nopt; i++) {
System.out.print("\t\t" + bestx[i]);
}
for (int i = 0; i < nopt; i++) {
// writer.addData(bestx[i]);
}
// writer.addData(bestf);
// writer.addData(this.currentCount);
// writer.writeData();
// writer.flush();
System.out.println("");
System.out.println("WorstF: " + worstf);
System.out.print("WorstX");
//writer.writeLine("");
//writer.writeLine("WorstF: " + worstf);
//writer.writeLine("WorstX");
for (int i = 0; i < nopt; i++) {
System.out.print("\t\t" + worstx[i]);
// writer.write("\t\t" + worstx[i]);
}
System.out.println("");
//writer.writeLine("");
//writer.flush();
//Check for convergency;
if (icall >= maxn) {
System.out.println("*** OPTIMIZATION SEARCH TERMINATED BECAUSE THE LIMIT");
System.out.println("ON THE MAXIMUM NUMBER OF TRIALS" + maxn);
System.out.println("HAS BEEN EXCEEDED. SEARCH WAS STOPPED AT TRIAL NUMBER:" + icall);
System.out.println("OF THE INITIAL LOOP!");
writer.println("*** OPTIMIZATION SEARCH TERMINATED BECAUSE THE LIMIT");
writer.println("ON THE MAXIMUM NUMBER OF TRIALS" + maxn);
writer.println("HAS BEEN EXCEEDED. SEARCH WAS STOPPED AT TRIAL NUMBER:" + icall);
writer.println("OF THE INITIAL LOOP!");
writer.flush();
}
if (gnrng < peps) {
writer.println("THE POPULATION HAS CONVERGED TO A PRESPECIFIED SMALL PARAMETER SPACE");
System.out.println("THE POPULATION HAS CONVERGED TO A PRESPECIFIED SMALL PARAMETER SPACE");
writer.flush();
}
// Begin evolution loops:
nloop = 0;
double criter[] = new double[kstop];
double criter_change = 100000;
while (icall < maxn && gnrng > peps && criter_change > pcento) {
nloop++;
// Loop on complexes (sub-populations);
for (int igs = 0; igs < ngs; igs++) {
// Partition the population into complexes (sub-populations);
int k1[] = new int[npg];
int k2[] = new int[npg];
for (int i = 0; i < npg; i++) {
k1[i] = i;
k2[i] = k1[i] * ngs + igs;
}
double cx[][] = new double[npg][nopt];
double cf[] = new double[npg];
for (int i = 0; i < npg; i++) {
for (int j = 0; j < nopt; j++) {
cx[k1[i]][j] = x[k2[i]][j];
}
cf[k1[i]] = xf[k2[i]];
}
//Evolve sub-population igs for nspl steps:
for (int loop = 0; loop < nspl; loop++) {
// Select simplex by sampling the complex according to a linear
// probability distribution
int lcs[] = new int[nps];
lcs[0] = 0;
for (int k3 = 1; k3 < nps; k3++) {
int lpos = 0;
for (int iter = 0; iter < 1000; iter++) {
lpos = (int) Math.floor(npg + 0.5 - Math.sqrt((npg + 0.5) *
(npg + 0.5) - npg * (npg + 1) * custom_rand()));
//wirklich noetig??
int idx = find(lcs, 0, k3, lpos);
if (idx == -1) {
break;
}
}
lcs[k3] = lpos;
}
sort(lcs);
// Construct the simplex:
double s[][] = new double[nps][nopt];
double sf[] = new double[nps];
for (int i = 0; i < nps; i++) {
for (int j = 0; j < nopt; j++) {
s[i][j] = cx[lcs[i]][j];
}
sf[i] = cf[lcs[i]];
}
double snew[] = new double[nopt];
double fnew;
double xnew[] = cceua(s, sf, bl, bu);
//icall aktualisieren!!!
icall++; // ????
for (int i = 0; i < nopt; i++) {
snew[i] = xnew[i];
}
fnew = xnew[nopt];
// Replace the worst point in Simplex with the new point:
s[nps - 1] = snew;
sf[nps - 1] = fnew;
//Replace the simplex into the complex;
for (int i = 0; i < nps; i++) {
for (int j = 0; j < nopt; j++) {
cx[lcs[i]][j] = s[i][j];
}
cf[lcs[i]] = sf[i];
}
// Sort the complex;
sort(cx, cf);
} // End of Inner Loop for Competitive Evolution of Simplexes
// Replace the complex back into the population;
for (int i = 0; i < npg; i++) {
for (int j = 0; j < nopt; j++) {
x[k2[i]][j] = cx[k1[i]][j];
}
xf[k2[i]] = cf[k1[i]];
}
} // End of Loop on Complex Evolution;
// Shuffled the complexes;
sort(x, xf);
// Record the best and worst points;
for (int i = 0; i < nopt; i++) {
bestx[i] = x[0][i];
worstx[i] = x[nopt - 1][i];
}
bestf = xf[0];
worstf = xf[npt - 1];
//Compute the standard deviation for each parameter
xnstd = std(x);
gnrng = normalizedgeometricRange(x, bound);
System.out.println("Evolution Loop:" + nloop + " - Trial - " + icall);
System.out.println("BESTF:" + bestf);
System.out.print("BESTX:");
//writer.writeLine("Evolution Loop:" + nloop + " - Trial - " + icall);
//writer.writeLine("BESTF:" + bestf);
//writer.writeLine("BESTX:");
for (int i = 0; i < nopt; i++) {
System.out.print("\t" + bestx[i]);
// writer.write("\t" + bestx[i]);
}
for (int i = 0; i < nopt; i++) {
//System.out.print("\t\t" + bestx[i]);
// writer.addData(bestx[i]);
}
// writer.addData(bestf);
// writer.addData(this.currentCount);
// writer.writeData();
// writer.flush();
System.out.println("\nWORSTF:" + worstf);
System.out.print("WORSTX:");
//writer.writeLine("\nWORSTF:" + worstf);
//writer.writeLine("WORSTX:");
for (int i = 0; i < nopt; i++) {
System.out.print("\t" + worstx[i]);
//writer.write("\t" + worstx[i]);
}
System.out.println("");
//writer.flush();
// Check for convergency;
if (icall >= maxn) {
System.out.println("*** OPTIMIZATION SEARCH TERMINATED BECAUSE THE LIMIT");
System.out.println("ON THE MAXIMUM NUMBER OF TRIALS " + maxn + " HAS BEEN EXCEEDED!");
writer.println("*** OPTIMIZATION SEARCH TERMINATED BECAUSE THE LIMIT");
writer.println("ON THE MAXIMUM NUMBER OF TRIALS " + maxn + " HAS BEEN EXCEEDED!");
writer.flush();
}
if (gnrng < peps) {
System.out.println("THE POPULATION HAS CONVERGED TO A PRESPECIFIED SMALL PARAMETER SPACE");
writer.println("THE POPULATION HAS CONVERGED TO A PRESPECIFIED SMALL PARAMETER SPACE");
writer.flush();
}
for (int i = 0; i < kstop - 1; i++) {
criter[i] = criter[i + 1];
}
criter[kstop - 1] = bestf;
if (nloop >= kstop) {
criter_change = Math.abs(criter[0] - criter[kstop - 1]) * 100.0;
double criter_mean = 0;
for (int i = 0; i < kstop; i++) {
criter_mean += Math.abs(criter[i]);
}
criter_mean /= kstop;
criter_change /= criter_mean;
if (criter_change < pcento) {
System.out.println("THE BEST POINT HAS IMPROVED IN LAST " + kstop + " LOOPS BY");
System.out.println("LESS THAN THE THRESHOLD " + pcento + "%");
System.out.println("CONVERGENCY HAS ACHIEVED BASED ON OBJECTIVE FUNCTION CRITERIA!!!");
writer.println("THE BEST POINT HAS IMPROVED IN LAST " + kstop + " LOOPS BY");
writer.println("LESS THAN THE THRESHOLD " + pcento + "%");
writer.println("CONVERGENCY HAS ACHIEVED BASED ON OBJECTIVE FUNCTION CRITERIA!!!");
writer.flush();
}
}
}
System.out.println("SEARCH WAS STOPPED AT TRIAL NUMBER: " + icall);
System.out.println("NORMALIZED GEOMETRIC RANGE = " + gnrng);
System.out.println("THE BEST POINT HAS IMPROVED IN LAST " + kstop + " LOOPS BY " + criter_change + "%");
writer.println("SEARCH WAS STOPPED AT TRIAL NUMBER: " + icall);
writer.println("NORMALIZED GEOMETRIC RANGE = " + gnrng);
writer.println("THE BEST POINT HAS IMPROVED IN LAST " + kstop + " LOOPS BY " + criter_change + "%");
writer.flush();
double[] retVal = new double[nopt + 1];
for (int i = 0; i < nopt; i++) {
retVal[i] = bestx[i];
}
retVal[nopt] = bestf;
return retVal;
}
public void run() {
maxn = 10000;
kstop = 10;
pcento = 0.01;
peps = 0.00001;
int iseed = 10;
int iniflg = 0;
System.out.println("Pcento: " + pcento);
double bestpoint[], bestx[], bestf;
double x0[] = randomSampler();
//double x0[] = {-1.295,2.659,1.1,0.1649};
bestpoint = sceua(x0, lowBound, upBound, maxn, kstop, pcento, peps, NumberOfComplexes, iseed, iniflg);
bestx = new double[parameters.length];
for (int i = 0; i < parameters.length; i++) {
bestx[i] = bestpoint[i];
}
bestf = bestpoint[parameters.length];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy