ngmf.util.cosu.MH Maven / Gradle / Ivy
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package ngmf.util.cosu;
// MCMCSCMH.java: Markov chain Monte Carlo
// Generic single-component Metropolis-Hastings algorithm
// with adapter for simulating discrete Markov chains.
// [email protected] 1998-02-24, 1998-03-17, 1999-08-06
import java.awt.*;
import java.applet.Applet;
abstract class MHsetup {
public abstract int getDimension();
public abstract SCMH newMH();
public void compute(double[][] obs, int dim, int n, TextAreaOutput out) {
}
}
abstract class MCMCApplet extends Applet {
Button stopsimulation, startsimulation;
TextAreaOutput taoutput;
Controls controls;
public void addcomponents(Panel allPanel) {
}
public void init() {
Panel allPanel = new Panel();
allPanel.setLayout(new BorderLayout(20, 20));
addcomponents(allPanel);
Panel botPanel = new Panel();
stopsimulation = new Button("Stop simulation");
startsimulation = new Button("Start simulation");
botPanel.add(stopsimulation);
botPanel.add(startsimulation);
allPanel.add("South", botPanel);
add(allPanel);
TextArea output = new TextArea(16, 40);
taoutput = new TextAreaOutput(output);
add(output);
}
public abstract MHsetup makeSetup();
public boolean action(Event e, Object o) {
if (e.target == stopsimulation) {
if (controls != null) {
controls.stopsimulation();
}
} else if (e.target == startsimulation) {
if (controls != null) {
controls.stopsimulation();
}
controls = new Controls(makeSetup(), taoutput);
controls.show();
}
return true;
}
public void stop() {
if (controls != null) {
controls.stopsimulation();
}
}
}
class TextAreaOutput {
private TextArea ta;
public TextAreaOutput(TextArea ta) {
this.ta = ta;
ta.setText("");
}
public void clear() {
if (ta != null) {
ta.setText("");
}
}
public void print(int i) {
ta.appendText(Integer.toString(i));
}
public void print(double d) {
ta.appendText(Double.toString(d));
}
public void print(String s) {
ta.appendText(s);
}
public void println(int i) {
ta.appendText(Integer.toString(i));
ta.appendText("\n");
}
public void println(double d) {
ta.appendText(Double.toString(d));
ta.appendText("\n");
}
public void println(String s) {
ta.appendText(s);
ta.appendText("\n");
}
}
class Controls extends Frame {
private MHsetup setup;
private int dimension;
private Graph[] graphs;
private TextAreaOutput taoutput;
private SCMH mh; // The active simulation, if any
private TextField iterIn = new TextField(15);
private TextField ageOut = new TextField(20);
private Button burnin = new Button("Burn-in (w/o graph)");
private Button further = new Button("Simulation (with graph)");
private Checkbox codaout = new Checkbox("CODA output");
public Controls(MHsetup setup, TextAreaOutput taoutput) {
super("Simulation controls");
resize(300, 150);
this.setup = setup;
this.taoutput = taoutput;
dimension = setup.getDimension();
graphs = new Graph[dimension];
for (int d = 1; d <= dimension; d++) {
graphs[d - 1] = new Graph("x" + d, 900, 200);
}
for (int d = 0; d < dimension; d++) {
graphs[d].show();
}
setLayout(new BorderLayout());
Panel iters = new Panel();
iters.setLayout(new GridLayout(2, 2));
iters.add(new Label("Number of steps per click:"));
iters.add(iterIn);
iterIn.setText("1000");
iters.add(new Label("Total number of steps:"));
iters.add(ageOut);
ageOut.setEditable(false);
Panel buttons = new Panel();
buttons.setLayout(new GridLayout(1, 3));
buttons.add(codaout);
buttons.add(burnin);
buttons.add(further);
add("North", iters);
add("South", buttons);
pack();
}
private void simulateAndDraw() {
int iterations = Integer.parseInt(iterIn.getText());
double[][] obs = new double[dimension][iterations];
for (int i = 0; i < iterations; i++) {
double[] obsi = mh.next();
for (int d = 0; d < dimension; d++) {
obs[d][i] = obsi[d];
}
}
ageOut.setText("" + mh.getAge());
for (int d = 0; d < dimension; d++) {
graphs[d].draw(obs[d], iterations, mh.getAge() - iterations);
}
if (iterations > 0 && dimension > 0) {
if (codaout.getState()) {
taoutput.clear();
}
taoutput.println("Iteration " + (mh.getAge() - iterations + 1) + " through " + mh.getAge() + ":");
if (codaout.getState()) {
writeCODA(obs, dimension, iterations, taoutput);
}
setup.compute(obs, dimension, iterations, taoutput);
taoutput.println("");
}
}
public boolean action(Event e, Object o) {
int oldcursor = getCursorType();
setCursor(Frame.WAIT_CURSOR);
if (e.target == burnin) {
if (mh == null) {
mh = setup.newMH();
}
int iterations = Integer.parseInt(iterIn.getText());
for (int d = 0; d < dimension; d++) {
graphs[d].draw(null, 0, 0);
}
for (int i = 0; i < iterations; i++) {
mh.next();
}
ageOut.setText("" + mh.getAge());
} else if (e.target == further) {
if (mh == null) {
mh = setup.newMH();
}
simulateAndDraw();
}
setCursor(oldcursor);
return true;
}
void writeCODA(double[][] obs, int dim, int n, TextAreaOutput out) {
// Write observations to file.out and parameter names to file.ind
// as required by the CODA program (Best, Cowles, Vines 1996, page 39)
StringBuffer buf = new StringBuffer(8 * n + 100);
buf.append("\nData for file.ind:\n\n");
for (int d = 0; d < dim; d++) {
buf.append("x" + (d + 1) + " " + (d * n + 1) + " " + ((d + 1) * n) + "\n");
}
buf.append("\nData for file.out:\n\n");
for (int d = 0; d < dim; d++) {
for (int i = 0; i < n; i++) {
buf.append((i + 1) + " " + obs[d][i] + "\n");
}
}
buf.append("\n");
out.print(buf.toString());
}
public void stopsimulation() {
mh = null;
taoutput.clear();
for (int d = 0; d < dimension; d++) {
graphs[d].hide();
graphs[d].dispose();
}
hide();
dispose();
}
public boolean handleEvent(Event e) {
if (e.id == Event.WINDOW_DESTROY) {
stopsimulation();
}
return super.handleEvent(e);
}
}
class ErrorMessage extends Dialog {
private Button ok;
ErrorMessage(String msg) {
super(null, true);
add("Center", new Label("Error: " + msg));
ok = new Button("OK");
add("South", ok);
pack();
show();
}
public boolean action(Event e, Object o) {
if (e.target == ok) {
hide();
dispose();
}
return true;
}
}
class SCMH {
// Single-component Metropolis-Hastings algorithm on probability
// space R^n = double[], where n is fixed
private SCMHparam param; // The parameters of the MC
private double[] lastx; // The state of the MC
private int age; // Number of steps simulated so far
public SCMH(SCMHparam param, double[] x0) {
this.param = param;
this.lastx = x0;
}
public double[] next() {
for (int i = 0; i < lastx.length; i++) {
double yi = param.qobs(i, lastx);
if (Math.random() <= param.alpha(lastx, i, yi)) {
lastx[i] = yi;
}
}
age++;
return param.ext(lastx);
}
public int getAge() {
return age;
}
}
abstract class SCMHparam {
// Draw an observation from the i'th dimension of the proposal
// distribution, given xt:
abstract double qobs(int i, double[] xt);
// Probability of accepting new point yi in i'th dimension, given
// that xt is the state after step i-1 of the current iteration.
abstract double alpha(double[] xt, int i, double yi);
// Observations may be transformed before being plotted etc, using
// the function ext. By default, this is the identity.
double[] ext(double[] obs) {
return obs;
}
}
// Special case: one-dimensional Markov chain on discrete space (int),
// specified by a function pi giving the transition probabilities.
abstract class MHdparam extends SCMHparam {
// Probability of going from (internal) state x to (internal) state y
abstract double pi(int x, int y);
// Draw an (internal) new state y given that we're in (internal) state xt
double qobs(int i, double[] xt) {
int x = (int) (xt[0]);
double p = Math.random();
int y = 0;
p -= pi(x, y);
while (p > 0) {
y++;
p -= pi(x, y);
}
return (double) y;
}
// In this case the probability of accepting the transition is 1
double alpha(double[] xt, int i, double yi) {
return 1.0;
}
}
class InputTransitions extends Panel {
// Data entry for an n by n transition matrix
private int dimension;
private TextField[][] pIn;
public InputTransitions(int dimension) {
this.dimension = dimension;
Panel matrixPanel = new Panel();
pIn = new TextField[dimension][dimension];
matrixPanel.setLayout(new GridLayout(dimension, dimension));
for (int d1 = 0; d1 < dimension; d1++) {
for (int d2 = 0; d2 < dimension; d2++) {
pIn[d1][d2] = new TextField(10);
matrixPanel.add(pIn[d1][d2]);
}
}
setLayout(new BorderLayout(20, 20));
add("North", new Label("Transition matrix"));
add("Center", matrixPanel);
}
public InputTransitions(int dimension, double[][] P0) {
this(dimension);
for (int d1 = 0; d1 < dimension; d1++) {
for (int d2 = 0; d2 < dimension; d2++) {
pIn[d1][d2].setText(P0[d1][d2] + "");
}
}
}
public double[][] getP() {
double[][] P = new double[dimension][dimension];
for (int d1 = 0; d1 < dimension; d1++) {
for (int d2 = 0; d2 < dimension; d2++) {
P[d1][d2] = new Double(pIn[d1][d2].getText()).doubleValue();
}
}
// Check that the transition matrix is legal; return null if not
double[] rowsum = new double[dimension];
double[] colsum = new double[dimension];
for (int d1 = 0; d1 < dimension; d1++) {
for (int d2 = 0; d2 < dimension; d2++) {
rowsum[d1] += P[d1][d2];
colsum[d2] += P[d1][d2];
}
}
for (int d = 0; d < dimension; d++) {
if (Math.abs(rowsum[d] - 1) > 1E-10 || Math.abs(colsum[d] - 1) > 1E-10) {
return null;
}
}
return P;
}
public void setEditable(boolean editable) {
for (int d1 = 0; d1 < dimension; d1++) {
for (int d2 = 0; d2 < dimension; d2++) {
pIn[d1][d2].setEditable(editable);
}
}
}
}
// Another implementation of MHdparam: using a transition matrix
// accumP with accumulated probabilities
class Transition extends MHdparam {
double[][] accumP;
public Transition(double[][] accumP) {
this.accumP = accumP;
}
double pi(int x, int y) // Not used
{
return 1 / (x - x);
}
// An efficient version of qobs, using binary search in accumP
double qobs(int dummy, double[] xt) {
int x = (int) (xt[0]);
double p = Math.random();
double[] distr = accumP[x];
int i, left = 0, right = distr.length - 1;
// Find and return least i s.t. p <= distr[i]
while (left <= right) {
// Here distr[left-1] <= p <= distr[right+1]
i = (left + right) / 2;
if (p < distr[i]) {
right = i - 1;
} else if (distr[i] < p) {
left = i + 1;
} else {
return i;
}
}
// Now p <= distr[left]
return left;
}
}
class Graph extends Frame {
private GraphCanvas graph;
public Graph(String title, int width, int height) {
super(title);
graph = new GraphCanvas(width, height);
setLayout(new GridLayout(1, 1));
add(graph);
pack();
}
public void draw(double[] obs, int n, int age0) {
graph.draw(obs, n, age0);
}
public boolean handleEvent(Event e) {
if (e.id == Event.WINDOW_DESTROY) {
hide();
dispose();
}
return super.handleEvent(e);
}
}
class GraphCanvas extends Canvas {
private int n; // the number of observations to draw
private double[] obs; // the observations
private int age0; // the age of obs[0] in the MC
private int width, height;
private double ymin, ymax, yscale;
private double xscale;
public GraphCanvas(int width, int height) {
resize(width, height);
}
public void draw(double[] obs, int n, int age0) {
this.obs = obs;
this.n = n;
this.age0 = age0;
if (n > 0) {
ymin = ymax = obs[0];
for (int i = 1; i < n; i++) {
ymin = Math.min(ymin, obs[i]);
ymax = Math.max(ymax, obs[i]);
}
if (ymax - ymin < 1E-10) {
n = 0; // Don't draw the graph
}
}
repaint();
}
private int xcoord(int x) {
return (int) (x * xscale);
}
private int ycoord(double y) {
return (int) (height - 15 - (y - ymin) * yscale);
}
public void paint(Graphics g) {
if (obs != null && n > 0) {
width = size().width;
height = size().height;
yscale = (height - 25.0) / (ymax - ymin);
xscale = (double) width / (n + 2);
g.clearRect(0, 0, width, height);
g.setColor(Color.black);
for (int i = 1; i < n; i++) {
g.drawLine(xcoord(i - 1), ycoord(obs[i - 1]),
xcoord(i), ycoord(obs[i]));
}
g.setColor(Color.green);
// The line y = 0:
g.drawLine(0, ycoord(0), width, ycoord(0));
// x-axis ticks
int agen = age0 + n, step = 1;
while (step < n / 20) {
step *= 10;
}
for (int x = (age0 / step + 1) * step; x < agen; x += step) {
int yc = ycoord(0);
if (yc < 0 || yc > height - 15) {
yc = height - 15;
}
int xc = xcoord(x - age0);
g.drawLine(xc, yc - 10, xc, yc);
g.drawString(x + "", xc - 10, yc + 10);
}
// y-axis ticks
step = 1;
while (step < (ymax - ymin) / 20) {
step *= 10;
}
for (int y = (int) (ymin / step) * step; y < ymax; y += step) {
int yc = ycoord(y);
g.drawString(y + "", 5, yc + 5);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy