All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jline.utils.Levenshtein Maven / Gradle / Ivy

There is a newer version: 3.26.3
Show newest version
/*
 * Copyright (c) 2002-2016, the original author(s).
 *
 * This software is distributable under the BSD license. See the terms of the
 * BSD license in the documentation provided with this software.
 *
 * https://opensource.org/licenses/BSD-3-Clause
 */
package org.jline.utils;

import java.util.HashMap;
import java.util.Map;

/**
 * The Damerau-Levenshtein Algorithm is an extension to the Levenshtein
 * Algorithm which solves the edit distance problem between a source string and
 * a target string with the following operations:
 *
 * 
    *
  • Character Insertion
  • *
  • Character Deletion
  • *
  • Character Replacement
  • *
  • Adjacent Character Swap
  • *
* * Note that the adjacent character swap operation is an edit that may be * applied when two adjacent characters in the source string match two adjacent * characters in the target string, but in reverse order, rather than a general * allowance for adjacent character swaps. *

* * This implementation allows the client to specify the costs of the various * edit operations with the restriction that the cost of two swap operations * must not be less than the cost of a delete operation followed by an insert * operation. This restriction is required to preclude two swaps involving the * same character being required for optimality which, in turn, enables a fast * dynamic programming solution. *

* * The running time of the Damerau-Levenshtein algorithm is O(n*m) where n is * the length of the source string and m is the length of the target string. * This implementation consumes O(n*m) space. * * @author Kevin L. Stern */ public class Levenshtein { public static int distance(CharSequence lhs, CharSequence rhs) { return distance(lhs, rhs, 1, 1, 1, 1); } public static int distance( CharSequence source, CharSequence target, int deleteCost, int insertCost, int replaceCost, int swapCost) { /* * Required to facilitate the premise to the algorithm that two swaps of the * same character are never required for optimality. */ if (2 * swapCost < insertCost + deleteCost) { throw new IllegalArgumentException("Unsupported cost assignment"); } if (source.length() == 0) { return target.length() * insertCost; } if (target.length() == 0) { return source.length() * deleteCost; } int[][] table = new int[source.length()][target.length()]; Map sourceIndexByCharacter = new HashMap<>(); if (source.charAt(0) != target.charAt(0)) { table[0][0] = Math.min(replaceCost, deleteCost + insertCost); } sourceIndexByCharacter.put(source.charAt(0), 0); for (int i = 1; i < source.length(); i++) { int deleteDistance = table[i - 1][0] + deleteCost; int insertDistance = (i + 1) * deleteCost + insertCost; int matchDistance = i * deleteCost + (source.charAt(i) == target.charAt(0) ? 0 : replaceCost); table[i][0] = Math.min(Math.min(deleteDistance, insertDistance), matchDistance); } for (int j = 1; j < target.length(); j++) { int deleteDistance = (j + 1) * insertCost + deleteCost; int insertDistance = table[0][j - 1] + insertCost; int matchDistance = j * insertCost + (source.charAt(0) == target.charAt(j) ? 0 : replaceCost); table[0][j] = Math.min(Math.min(deleteDistance, insertDistance), matchDistance); } for (int i = 1; i < source.length(); i++) { int maxSourceLetterMatchIndex = source.charAt(i) == target.charAt(0) ? 0 : -1; for (int j = 1; j < target.length(); j++) { Integer candidateSwapIndex = sourceIndexByCharacter.get(target.charAt(j)); int jSwap = maxSourceLetterMatchIndex; int deleteDistance = table[i - 1][j] + deleteCost; int insertDistance = table[i][j - 1] + insertCost; int matchDistance = table[i - 1][j - 1]; if (source.charAt(i) != target.charAt(j)) { matchDistance += replaceCost; } else { maxSourceLetterMatchIndex = j; } int swapDistance; if (candidateSwapIndex != null && jSwap != -1) { int iSwap = candidateSwapIndex; int preSwapCost; if (iSwap == 0 && jSwap == 0) { preSwapCost = 0; } else { preSwapCost = table[Math.max(0, iSwap - 1)][Math.max(0, jSwap - 1)]; } swapDistance = preSwapCost + (i - iSwap - 1) * deleteCost + (j - jSwap - 1) * insertCost + swapCost; } else { swapDistance = Integer.MAX_VALUE; } table[i][j] = Math.min(Math.min(Math.min(deleteDistance, insertDistance), matchDistance), swapDistance); } sourceIndexByCharacter.put(source.charAt(i), i); } return table[source.length() - 1][target.length() - 1]; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy