All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.jme3.scene.plugins.blender.curves.BezierCurve Maven / Gradle / Ivy

The newest version!
package com.jme3.scene.plugins.blender.curves;

import java.util.ArrayList;
import java.util.List;

import com.jme3.math.Vector3f;
import com.jme3.scene.plugins.blender.file.DynamicArray;
import com.jme3.scene.plugins.blender.file.Structure;

/**
 * A class that helps to calculate the bezier curves calues. It uses doubles for performing calculations to minimize
 * floating point operations errors.
 * @author Marcin Roguski (Kaelthas)
 */
public class BezierCurve {
    private static final int IPO_CONSTANT = 0;
    private static final int IPO_LINEAR   = 1;
    private static final int IPO_BEZIER   = 2;

    public static final int  X_VALUE      = 0;
    public static final int  Y_VALUE      = 1;
    public static final int  Z_VALUE      = 2;
    /**
     * The type of the curve. Describes the data it modifies.
     * Used in ipos calculations.
     */
    private int              type;
    /** The dimension of the curve. */
    private int              dimension;
    /** A table of the bezier points. */
    private double[][][]     bezierPoints;
    /** Array that stores a radius for each bezier triple. */
    private double[]         radiuses;
    /** Interpolation types of the bezier triples. */
    private int[]            interpolations;

    public BezierCurve(final int type, final List bezTriples, final int dimension) {
        this(type, bezTriples, dimension, false);
    }

    @SuppressWarnings("unchecked")
    public BezierCurve(final int type, final List bezTriples, final int dimension, boolean fixUpAxis) {
        if (dimension != 2 && dimension != 3) {
            throw new IllegalArgumentException("The dimension of the curve should be 2 or 3!");
        }
        this.type = type;
        this.dimension = dimension;
        // first index of the bezierPoints table has the length of triples amount
        // the second index points to a table od three points of a bezier triple (handle, point, handle)
        // the third index specifies the coordinates of the specific point in a bezier triple
        bezierPoints = new double[bezTriples.size()][3][dimension];
        radiuses = new double[bezTriples.size()];
        interpolations = new int[bezTriples.size()];
        int i = 0, j, k;
        for (Structure bezTriple : bezTriples) {
            DynamicArray vec = (DynamicArray) bezTriple.getFieldValue("vec");
            for (j = 0; j < 3; ++j) {
                for (k = 0; k < dimension; ++k) {
                    bezierPoints[i][j][k] = vec.get(j, k).doubleValue();
                }
                if (fixUpAxis && dimension == 3) {
                    double temp = bezierPoints[i][j][2];
                    bezierPoints[i][j][2] = -bezierPoints[i][j][1];
                    bezierPoints[i][j][1] = temp;
                }
            }
            radiuses[i] = ((Number) bezTriple.getFieldValue("radius")).floatValue();
            interpolations[i++] = ((Number) bezTriple.getFieldValue("ipo", IPO_BEZIER)).intValue();
        }
    }

    /**
     * This method evaluates the data for the specified frame. The Y value is returned.
     * @param frame
     *            the frame for which the value is being calculated
     * @param valuePart
     *            this param specifies wheather we should return the X, Y or Z part of the result value; it should have
     *            one of the following values: X_VALUE - the X factor of the result Y_VALUE - the Y factor of the result
     *            Z_VALUE - the Z factor of the result
     * @return the value of the curve
     */
    public double evaluate(int frame, int valuePart) {
        for (int i = 0; i < bezierPoints.length - 1; ++i) {
            if (frame >= bezierPoints[i][1][0] && frame <= bezierPoints[i + 1][1][0]) {
                double t = (frame - bezierPoints[i][1][0]) / (bezierPoints[i + 1][1][0] - bezierPoints[i][1][0]);
                switch (interpolations[i]) {
                    case IPO_BEZIER:
                        double oneMinusT = 1.0f - t;
                        double oneMinusT2 = oneMinusT * oneMinusT;
                        double t2 = t * t;
                        return bezierPoints[i][1][valuePart] * oneMinusT2 * oneMinusT + 3.0f * bezierPoints[i][2][valuePart] * t * oneMinusT2 + 3.0f * bezierPoints[i + 1][0][valuePart] * t2 * oneMinusT + bezierPoints[i + 1][1][valuePart] * t2 * t;
                    case IPO_LINEAR:
                        return (1f - t) * bezierPoints[i][1][valuePart] + t * bezierPoints[i + 1][1][valuePart];
                    case IPO_CONSTANT:
                        return bezierPoints[i][1][valuePart];
                    default:
                        throw new IllegalStateException("Unknown interpolation type for curve: " + interpolations[i]);
                }
            }
        }
        if (frame < bezierPoints[0][1][0]) {
            return bezierPoints[0][1][1];
        } else { // frame>bezierPoints[bezierPoints.length-1][1][0]
            return bezierPoints[bezierPoints.length - 1][1][1];
        }
    }

    /**
     * This method returns the frame where last bezier triple center point of the bezier curve is located.
     * @return the frame number of the last defined bezier triple point for the curve
     */
    public int getLastFrame() {
        return (int) bezierPoints[bezierPoints.length - 1][1][0];
    }

    /**
     * This method returns the type of the bezier curve. The type describes the parameter that this curve modifies
     * (ie. LocationX or rotationW of the feature).
     * @return the type of the bezier curve
     */
    public int getType() {
        return type;
    }

    /**
     * The method returns the radius for the required bezier triple.
     * 
     * @param bezierTripleIndex
     *            index of the bezier triple
     * @return radius of the required bezier triple
     */
    public double getRadius(int bezierTripleIndex) {
        return radiuses[bezierTripleIndex];
    }

    /**
     * This method returns a list of control points for this curve.
     * @return a list of control points for this curve.
     */
    public List getControlPoints() {
        List controlPoints = new ArrayList(bezierPoints.length * 3);
        for (int i = 0; i < bezierPoints.length; ++i) {
            controlPoints.add(new Vector3f((float) bezierPoints[i][0][0], (float) bezierPoints[i][0][1], (float) bezierPoints[i][0][2]));
            controlPoints.add(new Vector3f((float) bezierPoints[i][1][0], (float) bezierPoints[i][1][1], (float) bezierPoints[i][1][2]));
            controlPoints.add(new Vector3f((float) bezierPoints[i][2][0], (float) bezierPoints[i][2][1], (float) bezierPoints[i][2][2]));
        }
        return controlPoints;
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder("Bezier curve: ").append(type).append('\n');
        for (int i = 0; i < bezierPoints.length; ++i) {
            sb.append(this.toStringBezTriple(i)).append('\n');
        }
        return sb.toString();
    }

    /**
     * This method converts the bezier triple of a specified index into text.
     * @param tripleIndex
     *            index of the triple
     * @return text representation of the triple
     */
    private String toStringBezTriple(int tripleIndex) {
        if (dimension == 2) {
            return "[(" + bezierPoints[tripleIndex][0][0] + ", " + bezierPoints[tripleIndex][0][1] + ") (" + bezierPoints[tripleIndex][1][0] + ", " + bezierPoints[tripleIndex][1][1] + ") (" + bezierPoints[tripleIndex][2][0] + ", " + bezierPoints[tripleIndex][2][1] + ")]";
        } else {
            return "[(" + bezierPoints[tripleIndex][0][0] + ", " + bezierPoints[tripleIndex][0][1] + ", " + bezierPoints[tripleIndex][0][2] + ") (" + bezierPoints[tripleIndex][1][0] + ", " + bezierPoints[tripleIndex][1][1] + ", " + bezierPoints[tripleIndex][1][2] + ") (" + bezierPoints[tripleIndex][2][0] + ", " + bezierPoints[tripleIndex][2][1] + ", " + bezierPoints[tripleIndex][2][2] + ")]";
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy