com.jme3.scene.plugins.blender.curves.CurvesTemporalMesh Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jme3-blender Show documentation
Show all versions of jme3-blender Show documentation
jMonkeyEngine is a 3D game engine for adventurous Java developers
The newest version!
package com.jme3.scene.plugins.blender.curves;
import java.nio.FloatBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap;
import java.util.logging.Logger;
import com.jme3.material.RenderState.FaceCullMode;
import com.jme3.math.FastMath;
import com.jme3.math.Spline;
import com.jme3.math.Spline.SplineType;
import com.jme3.math.Vector3f;
import com.jme3.math.Vector4f;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.mesh.IndexBuffer;
import com.jme3.scene.plugins.blender.BlenderContext;
import com.jme3.scene.plugins.blender.file.BlenderFileException;
import com.jme3.scene.plugins.blender.file.BlenderInputStream;
import com.jme3.scene.plugins.blender.file.DynamicArray;
import com.jme3.scene.plugins.blender.file.FileBlockHeader;
import com.jme3.scene.plugins.blender.file.Pointer;
import com.jme3.scene.plugins.blender.file.Structure;
import com.jme3.scene.plugins.blender.materials.MaterialContext;
import com.jme3.scene.plugins.blender.materials.MaterialHelper;
import com.jme3.scene.plugins.blender.meshes.Edge;
import com.jme3.scene.plugins.blender.meshes.Face;
import com.jme3.scene.plugins.blender.meshes.TemporalMesh;
import com.jme3.scene.shape.Curve;
import com.jme3.scene.shape.Surface;
import com.jme3.util.BufferUtils;
/**
* A temporal mesh for curves and surfaces. It works in similar way as TemporalMesh for meshes.
* It prepares all necessary lines and faces and allows to apply modifiers just like in regular temporal mesh.
*
* @author Marcin Roguski (Kaelthas)
*/
public class CurvesTemporalMesh extends TemporalMesh {
private static final Logger LOGGER = Logger.getLogger(CurvesTemporalMesh.class.getName());
private static final int TYPE_BEZIER = 0x0001;
private static final int TYPE_NURBS = 0x0004;
private static final int FLAG_3D = 0x0001;
private static final int FLAG_FRONT = 0x0002;
private static final int FLAG_BACK = 0x0004;
private static final int FLAG_FILL_CAPS = 0x4000;
private static final int FLAG_SMOOTH = 0x0001;
protected CurvesHelper curvesHelper;
protected boolean is2D;
protected boolean isFront;
protected boolean isBack;
protected boolean fillCaps;
protected float bevelStart;
protected float bevelEnd;
protected List beziers = new ArrayList();
protected CurvesTemporalMesh bevelObject;
protected CurvesTemporalMesh taperObject;
/** The scale that is used if the curve is a bevel or taper curve. */
protected Vector3f scale = new Vector3f(1, 1, 1);
/**
* The constructor creates an empty temporal mesh.
* @param blenderContext
* the blender context
* @throws BlenderFileException
* this will never be thrown here
*/
protected CurvesTemporalMesh(BlenderContext blenderContext) throws BlenderFileException {
super(null, blenderContext, false);
}
/**
* Loads the temporal mesh from the given curve structure. The mesh can be either curve or surface.
* @param curveStructure
* the structure that contains the curve/surface data
* @param blenderContext
* the blender context
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
public CurvesTemporalMesh(Structure curveStructure, BlenderContext blenderContext) throws BlenderFileException {
this(curveStructure, new Vector3f(1, 1, 1), true, blenderContext);
}
/**
* Loads the temporal mesh from the given curve structure. The mesh can be either curve or surface.
* @param curveStructure
* the structure that contains the curve/surface data
* @param scale
* the scale used if the current curve is used as a bevel curve
* @param loadBevelAndTaper indicates if bevel and taper should be loaded (this is not needed for curves that are loaded to be used as bevel and taper)
* @param blenderContext
* the blender context
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
@SuppressWarnings("unchecked")
private CurvesTemporalMesh(Structure curveStructure, Vector3f scale, boolean loadBevelAndTaper, BlenderContext blenderContext) throws BlenderFileException {
super(curveStructure, blenderContext, false);
name = curveStructure.getName();
curvesHelper = blenderContext.getHelper(CurvesHelper.class);
this.scale = scale;
int flag = ((Number) curveStructure.getFieldValue("flag")).intValue();
is2D = (flag & FLAG_3D) == 0;
if (is2D) {
// TODO: add support for 3D flag
LOGGER.warning("2D flag not yet supported for curves!");
}
isFront = (flag & FLAG_FRONT) != 0;
isBack = (flag & FLAG_BACK) != 0;
fillCaps = (flag & FLAG_FILL_CAPS) != 0;
bevelStart = ((Number) curveStructure.getFieldValue("bevfac1", 0)).floatValue();
bevelEnd = ((Number) curveStructure.getFieldValue("bevfac2", 1)).floatValue();
if (bevelStart > bevelEnd) {
float temp = bevelStart;
bevelStart = bevelEnd;
bevelEnd = temp;
}
LOGGER.fine("Reading nurbs (and sorting them by material).");
Map> nurbs = new HashMap>();
List nurbStructures = ((Structure) curveStructure.getFieldValue("nurb")).evaluateListBase();
for (Structure nurb : nurbStructures) {
Number matNumber = (Number) nurb.getFieldValue("mat_nr");
List nurbList = nurbs.get(matNumber);
if (nurbList == null) {
nurbList = new ArrayList();
nurbs.put(matNumber, nurbList);
}
nurbList.add(nurb);
}
LOGGER.fine("Getting materials.");
MaterialHelper materialHelper = blenderContext.getHelper(MaterialHelper.class);
materials = materialHelper.getMaterials(curveStructure, blenderContext);
if (materials != null) {
for (MaterialContext materialContext : materials) {
materialContext.setFaceCullMode(FaceCullMode.Off);
}
}
LOGGER.fine("Getting or creating bevel object.");
bevelObject = loadBevelAndTaper ? this.loadBevelObject(curveStructure) : null;
LOGGER.fine("Getting taper object.");
Pointer pTaperObject = (Pointer) curveStructure.getFieldValue("taperobj");
if (bevelObject != null && pTaperObject.isNotNull()) {
Structure taperObjectStructure = pTaperObject.fetchData().get(0);
DynamicArray scaleArray = (DynamicArray) taperObjectStructure.getFieldValue("size");
scale = blenderContext.getBlenderKey().isFixUpAxis() ? new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(1).floatValue(), scaleArray.get(2).floatValue()) : new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(2).floatValue(), scaleArray.get(1).floatValue());
Pointer pTaperStructure = (Pointer) taperObjectStructure.getFieldValue("data");
Structure taperStructure = pTaperStructure.fetchData().get(0);
taperObject = new CurvesTemporalMesh(taperStructure, blenderContext);
}
LOGGER.fine("Creating the result curves.");
for (Entry> nurbEntry : nurbs.entrySet()) {
for (Structure nurb : nurbEntry.getValue()) {
int type = ((Number) nurb.getFieldValue("type")).intValue();
if ((type & TYPE_BEZIER) != 0) {
this.loadBezierCurve(nurb, nurbEntry.getKey().intValue());
} else if ((type & TYPE_NURBS) != 0) {
this.loadNurbSurface(nurb, nurbEntry.getKey().intValue());
} else {
throw new BlenderFileException("Unknown curve type: " + type);
}
}
}
if (bevelObject != null && beziers.size() > 0) {
this.append(this.applyBevelAndTaper(this, bevelObject, taperObject, blenderContext));
} else {
for (BezierLine bezierLine : beziers) {
int originalVerticesAmount = vertices.size();
vertices.add(bezierLine.vertices[0]);
Vector3f v = bezierLine.vertices[1].subtract(bezierLine.vertices[0]).normalizeLocal();
float temp = v.x;
v.x = -v.y;
v.y = temp;
v.z = 0;
normals.add(v);// this will be smoothed in the next iteration
for (int i = 1; i < bezierLine.vertices.length; ++i) {
vertices.add(bezierLine.vertices[i]);
edges.add(new Edge(originalVerticesAmount + i - 1, originalVerticesAmount + i, 0, false, this));
// generating normal for vertex at 'i'
v = bezierLine.vertices[i].subtract(bezierLine.vertices[i - 1]).normalizeLocal();
temp = v.x;
v.x = -v.y;
v.y = temp;
v.z = 0;
// make the previous normal smooth
normals.get(i - 1).addLocal(v).multLocal(0.5f).normalizeLocal();
normals.add(v);// this will be smoothed in the next iteration
}
}
}
}
/**
* The method computes the value of a point at the certain relational distance from its beginning.
* @param alongRatio
* the relative distance along the curve; should be a value between 0 and 1 inclusive;
* if the value exceeds the boundaries it is truncated to them
* @return computed value along the curve
*/
private Vector3f getValueAlongCurve(float alongRatio) {
alongRatio = FastMath.clamp(alongRatio, 0, 1);
Vector3f result = new Vector3f();
float probeLength = this.getLength() * alongRatio, length = 0;
for (BezierLine bezier : beziers) {
float edgeLength = bezier.getLength();
if (length + edgeLength >= probeLength) {
float ratioAlongEdge = (probeLength - length) / edgeLength;
return bezier.getValueAlongCurve(ratioAlongEdge);
}
length += edgeLength;
}
return result;
}
/**
* @return the length of the curve
*/
private float getLength() {
float result = 0;
for (BezierLine bezier : beziers) {
result += bezier.getLength();
}
return result;
}
/**
* The methods loads the bezier curve from the given structure.
* @param nurbStructure
* the structure containing a single curve definition
* @param materialIndex
* the index of this segment's material
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
private void loadBezierCurve(Structure nurbStructure, int materialIndex) throws BlenderFileException {
Pointer pBezierTriple = (Pointer) nurbStructure.getFieldValue("bezt");
if (pBezierTriple.isNotNull()) {
int resolution = ((Number) nurbStructure.getFieldValue("resolu")).intValue();
boolean cyclic = (((Number) nurbStructure.getFieldValue("flagu")).intValue() & 0x01) != 0;
boolean smooth = (((Number) nurbStructure.getFieldValue("flag")).intValue() & FLAG_SMOOTH) != 0;
// creating the curve object
BezierCurve bezierCurve = new BezierCurve(0, pBezierTriple.fetchData(), 3, blenderContext.getBlenderKey().isFixUpAxis());
List controlPoints = bezierCurve.getControlPoints();
if (cyclic) {
// copy the first three points at the end
for (int i = 0; i < 3; ++i) {
controlPoints.add(controlPoints.get(i));
}
}
// removing the first and last handles
controlPoints.remove(0);
controlPoints.remove(controlPoints.size() - 1);
// creating curve
Curve curve = new Curve(new Spline(SplineType.Bezier, controlPoints, 0, false), resolution);
FloatBuffer vertsBuffer = (FloatBuffer) curve.getBuffer(Type.Position).getData();
beziers.add(new BezierLine(BufferUtils.getVector3Array(vertsBuffer), materialIndex, smooth, cyclic));
}
}
/**
* This method loads the NURBS curve or surface.
* @param nurb
* the NURBS data structure
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
@SuppressWarnings("unchecked")
private void loadNurbSurface(Structure nurb, int materialIndex) throws BlenderFileException {
// loading the knots
List[] knots = new List[2];
Pointer[] pKnots = new Pointer[] { (Pointer) nurb.getFieldValue("knotsu"), (Pointer) nurb.getFieldValue("knotsv") };
for (int i = 0; i < knots.length; ++i) {
if (pKnots[i].isNotNull()) {
FileBlockHeader fileBlockHeader = blenderContext.getFileBlock(pKnots[i].getOldMemoryAddress());
BlenderInputStream blenderInputStream = blenderContext.getInputStream();
blenderInputStream.setPosition(fileBlockHeader.getBlockPosition());
int knotsAmount = fileBlockHeader.getCount() * fileBlockHeader.getSize() / 4;
knots[i] = new ArrayList(knotsAmount);
for (int j = 0; j < knotsAmount; ++j) {
knots[i].add(Float.valueOf(blenderInputStream.readFloat()));
}
}
}
// loading the flags and orders (basis functions degrees)
int flag = ((Number) nurb.getFieldValue("flag")).intValue();
boolean smooth = (flag & FLAG_SMOOTH) != 0;
int flagU = ((Number) nurb.getFieldValue("flagu")).intValue();
int flagV = ((Number) nurb.getFieldValue("flagv")).intValue();
int orderU = ((Number) nurb.getFieldValue("orderu")).intValue();
int orderV = ((Number) nurb.getFieldValue("orderv")).intValue();
// loading control points and their weights
int pntsU = ((Number) nurb.getFieldValue("pntsu")).intValue();
int pntsV = ((Number) nurb.getFieldValue("pntsv")).intValue();
List bPoints = ((Pointer) nurb.getFieldValue("bp")).fetchData();
List> controlPoints = new ArrayList>(pntsV);
for (int i = 0; i < pntsV; ++i) {
List uControlPoints = new ArrayList(pntsU);
for (int j = 0; j < pntsU; ++j) {
DynamicArray vec = (DynamicArray) bPoints.get(j + i * pntsU).getFieldValue("vec");
if (blenderContext.getBlenderKey().isFixUpAxis()) {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(2).floatValue(), -vec.get(1).floatValue(), vec.get(3).floatValue()));
} else {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(1).floatValue(), vec.get(2).floatValue(), vec.get(3).floatValue()));
}
}
if ((flagU & 0x01) != 0) {
for (int k = 0; k < orderU - 1; ++k) {
uControlPoints.add(uControlPoints.get(k));
}
}
controlPoints.add(uControlPoints);
}
if ((flagV & 0x01) != 0) {
for (int k = 0; k < orderV - 1; ++k) {
controlPoints.add(controlPoints.get(k));
}
}
int originalVerticesAmount = vertices.size();
int resolu = ((Number) nurb.getFieldValue("resolu")).intValue();
if (knots[1] == null) {// creating the NURB curve
Curve curve = new Curve(new Spline(controlPoints.get(0), knots[0]), resolu);
FloatBuffer vertsBuffer = (FloatBuffer) curve.getBuffer(Type.Position).getData();
beziers.add(new BezierLine(BufferUtils.getVector3Array(vertsBuffer), materialIndex, smooth, false));
} else {// creating the NURB surface
int resolv = ((Number) nurb.getFieldValue("resolv")).intValue();
int uSegments = resolu * controlPoints.get(0).size() - 1;
int vSegments = resolv * controlPoints.size() - 1;
Surface nurbSurface = Surface.createNurbsSurface(controlPoints, knots, uSegments, vSegments, orderU, orderV, smooth);
FloatBuffer vertsBuffer = (FloatBuffer) nurbSurface.getBuffer(Type.Position).getData();
vertices.addAll(Arrays.asList(BufferUtils.getVector3Array(vertsBuffer)));
FloatBuffer normalsBuffer = (FloatBuffer) nurbSurface.getBuffer(Type.Normal).getData();
normals.addAll(Arrays.asList(BufferUtils.getVector3Array(normalsBuffer)));
IndexBuffer indexBuffer = nurbSurface.getIndexBuffer();
for (int i = 0; i < indexBuffer.size(); i += 3) {
int index1 = indexBuffer.get(i) + originalVerticesAmount;
int index2 = indexBuffer.get(i + 1) + originalVerticesAmount;
int index3 = indexBuffer.get(i + 2) + originalVerticesAmount;
faces.add(new Face(new Integer[] { index1, index2, index3 }, smooth, materialIndex, null, null, this));
}
}
}
/**
* The method loads the bevel object that should be applied to curve. It can either be another curve or a generated one
* based on the bevel generating parameters in blender.
* @param curveStructure
* the structure with the curve's data (the curve being loaded, NOT the bevel curve)
* @return the curve's bevel object
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
@SuppressWarnings("unchecked")
private CurvesTemporalMesh loadBevelObject(Structure curveStructure) throws BlenderFileException {
CurvesTemporalMesh bevelObject = null;
Pointer pBevelObject = (Pointer) curveStructure.getFieldValue("bevobj");
boolean cyclic = false;
if (pBevelObject.isNotNull()) {
Structure bevelObjectStructure = pBevelObject.fetchData().get(0);
DynamicArray scaleArray = (DynamicArray) bevelObjectStructure.getFieldValue("size");
Vector3f scale = blenderContext.getBlenderKey().isFixUpAxis() ? new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(1).floatValue(), scaleArray.get(2).floatValue()) : new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(2).floatValue(), scaleArray.get(1).floatValue());
Pointer pBevelStructure = (Pointer) bevelObjectStructure.getFieldValue("data");
Structure bevelStructure = pBevelStructure.fetchData().get(0);
bevelObject = new CurvesTemporalMesh(bevelStructure, scale, false, blenderContext);
// transforming the bezier lines from plane XZ to plane YZ
for (BezierLine bl : bevelObject.beziers) {
for (Vector3f v : bl.vertices) {
// casting the bezier curve orthogonally on the plane XZ (making Y = 0) and then moving the plane XZ to ZY in a way that:
// -Z => +Y and +X => +Z and +Y => +X (but because casting would make Y = 0, then we simply set X = 0)
v.y = -v.z;
v.z = v.x;
v.x = 0;
}
// bevel curves should not have repeated the first vertex at the end when they are cyclic (this is handled differently)
if (bl.isCyclic()) {
bl.removeLastVertex();
}
}
} else {
fillCaps = false;// this option is inactive in blender when there is no bevel object applied
int bevResol = ((Number) curveStructure.getFieldValue("bevresol")).intValue();
float extrude = ((Number) curveStructure.getFieldValue("ext1")).floatValue();
float bevelDepth = ((Number) curveStructure.getFieldValue("ext2")).floatValue();
float offset = ((Number) curveStructure.getFieldValue("offset", 0)).floatValue();
if (offset != 0) {
// TODO: add support for offset parameter
LOGGER.warning("Offset parameter not yet supported.");
}
Curve bevelCurve = null;
if (bevelDepth > 0.0f) {
float handlerLength = bevelDepth / 2.0f;
cyclic = !isFront && !isBack;
List conrtolPoints = new ArrayList();
// blenders from 2.49 to 2.52 did not pay attention to fron and back faces
// so in order to draw the scene exactly as it is in different blender versions the blender version is checked here
// when neither fron and back face is selected all version behave the same and draw full bevel around the curve
if (cyclic || blenderContext.getBlenderVersion() < 253) {
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude, -bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, -bevelDepth));
if (extrude > 0) {
conrtolPoints.add(new Vector3f(0, extrude - handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude + handlerLength, -bevelDepth));
}
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, 0));
if (cyclic) {
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, handlerLength));
conrtolPoints.add(new Vector3f(0, extrude + handlerLength, bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude, bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude - handlerLength, bevelDepth));
if (extrude > 0) {
conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude, bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, bevelDepth));
}
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, handlerLength));
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0));
}
} else {
if (extrude > 0) {
if (isBack) {
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, -bevelDepth));
}
conrtolPoints.add(new Vector3f(0, -extrude, -bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude - handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude, -bevelDepth));
if (isFront) {
conrtolPoints.add(new Vector3f(0, extrude + handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, 0));
}
} else {
if (isFront && isBack) {
conrtolPoints.add(new Vector3f(0, -bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, 0, -bevelDepth));
conrtolPoints.add(new Vector3f(0, handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, bevelDepth, 0));
} else {
if (isBack) {
conrtolPoints.add(new Vector3f(0, -bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, 0, -bevelDepth));
} else {
conrtolPoints.add(new Vector3f(0, 0, -bevelDepth));
conrtolPoints.add(new Vector3f(0, handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, bevelDepth, 0));
}
}
}
}
bevelCurve = new Curve(new Spline(SplineType.Bezier, conrtolPoints, 0, false), bevResol);
} else if (extrude > 0.0f) {
Spline bevelSpline = new Spline(SplineType.Linear, new Vector3f[] { new Vector3f(0, extrude, 0), new Vector3f(0, -extrude, 0) }, 1, false);
bevelCurve = new Curve(bevelSpline, bevResol);
}
if (bevelCurve != null) {
bevelObject = new CurvesTemporalMesh(blenderContext);
FloatBuffer vertsBuffer = (FloatBuffer) bevelCurve.getBuffer(Type.Position).getData();
Vector3f[] verts = BufferUtils.getVector3Array(vertsBuffer);
if (cyclic) {// get rid of the last vertex which is identical to the first one
verts = Arrays.copyOf(verts, verts.length - 1);
}
bevelObject.beziers.add(new BezierLine(verts, 0, false, cyclic));
}
}
return bevelObject;
}
private List getScaledBeziers() {
if (scale.equals(Vector3f.UNIT_XYZ)) {
return beziers;
}
List result = new ArrayList();
for (BezierLine bezierLine : beziers) {
result.add(bezierLine.scale(scale));
}
return result;
}
/**
* This method applies bevel and taper objects to the curve.
* @param curve
* the curve we apply the objects to
* @param bevelObject
* the bevel object
* @param taperObject
* the taper object
* @param blenderContext
* the blender context
* @return a list of geometries representing the beveled and/or tapered curve
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
private CurvesTemporalMesh applyBevelAndTaper(CurvesTemporalMesh curve, CurvesTemporalMesh bevelObject, CurvesTemporalMesh taperObject, BlenderContext blenderContext) throws BlenderFileException {
List bevelBezierLines = bevelObject.getScaledBeziers();
List curveLines = curve.beziers;
if (bevelBezierLines.size() == 0 || curveLines.size() == 0) {
return null;
}
CurvesTemporalMesh result = new CurvesTemporalMesh(blenderContext);
for (BezierLine curveLine : curveLines) {
Vector3f[] curveLineVertices = curveLine.getVertices(bevelStart, bevelEnd);
for (BezierLine bevelBezierLine : bevelBezierLines) {
CurvesTemporalMesh partResult = new CurvesTemporalMesh(blenderContext);
Vector3f[] bevelLineVertices = bevelBezierLine.getVertices();
List bevels = new ArrayList();
Vector3f[] bevelPoints = curvesHelper.transformToFirstLineOfBevelPoints(bevelLineVertices, curveLineVertices[0], curveLineVertices[1]);
bevels.add(bevelPoints);
for (int i = 1; i < curveLineVertices.length - 1; ++i) {
bevelPoints = curvesHelper.transformBevel(bevelPoints, curveLineVertices[i - 1], curveLineVertices[i], curveLineVertices[i + 1]);
bevels.add(bevelPoints);
}
bevelPoints = curvesHelper.transformBevel(bevelPoints, curveLineVertices[curveLineVertices.length - 2], curveLineVertices[curveLineVertices.length - 1], null);
bevels.add(bevelPoints);
Vector3f subtractResult = new Vector3f();
if (bevels.size() > 2) {
// changing the first and last bevel so that they are parallel to their neighbours (blender works this way)
// notice this implicates that the distances of every corresponding point in the two bevels must be identical and
// equal to the distance between the points on curve that define the bevel position
// so instead doing complicated rotations on each point we will simply properly translate each of them
int[][] pointIndexes = new int[][] { { 0, 1 }, { curveLineVertices.length - 1, curveLineVertices.length - 2 } };
for (int[] indexes : pointIndexes) {
float distance = curveLineVertices[indexes[1]].subtract(curveLineVertices[indexes[0]], subtractResult).length();
Vector3f[] bevel = bevels.get(indexes[0]);
Vector3f[] nextBevel = bevels.get(indexes[1]);
for (int i = 0; i < bevel.length; ++i) {
float d = bevel[i].subtract(nextBevel[i], subtractResult).length();
subtractResult.normalizeLocal().multLocal(distance - d);
bevel[i].addLocal(subtractResult);
}
}
}
if (taperObject != null) {
float curveLength = curveLine.getLength(), lengthAlongCurve = bevelStart;
for (int i = 0; i < curveLineVertices.length; ++i) {
if (i > 0) {
lengthAlongCurve += curveLineVertices[i].subtract(curveLineVertices[i - 1], subtractResult).length();
}
float taperScale = -taperObject.getValueAlongCurve(lengthAlongCurve / curveLength).z * taperObject.scale.z;
if (taperScale != 1) {
this.applyScale(bevels.get(i), curveLineVertices[i], taperScale);
}
}
}
// adding vertices to the part result
for (Vector3f[] bevel : bevels) {
for (Vector3f d : bevel) {
partResult.getVertices().add(d);
}
}
// preparing faces for the part result (each face is a quad)
int bevelVertCount = bevelPoints.length;
for (int i = 0; i < bevels.size() - 1; ++i) {
for (int j = 0; j < bevelVertCount - 1; ++j) {
Integer[] indexes = new Integer[] { i * bevelVertCount + j + 1, (i + 1) * bevelVertCount + j + 1, (i + 1) * bevelVertCount + j, i * bevelVertCount + j };
partResult.getFaces().add(new Face(indexes, curveLine.isSmooth(), curveLine.getMaterialNumber(), null, null, partResult));
partResult.getEdges().add(new Edge(indexes[0], indexes[1], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[1], indexes[2], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[2], indexes[3], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[3], indexes[0], 0, true, partResult));
}
if (bevelBezierLine.isCyclic()) {
int j = bevelVertCount - 1;
Integer[] indexes = new Integer[] { i * bevelVertCount, (i + 1) * bevelVertCount, (i + 1) * bevelVertCount + j, i * bevelVertCount + j };
partResult.getFaces().add(new Face(indexes, curveLine.isSmooth(), curveLine.getMaterialNumber(), null, null, partResult));
partResult.getEdges().add(new Edge(indexes[0], indexes[1], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[1], indexes[2], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[2], indexes[3], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[3], indexes[0], 0, true, partResult));
}
}
partResult.generateNormals();
if (fillCaps) {// caps in blender behave as if they weren't affected by the smooth factor
// START CAP
Vector3f[] cap = bevels.get(0);
List capIndexes = new ArrayList(cap.length);
Vector3f capNormal = curveLineVertices[0].subtract(curveLineVertices[1]).normalizeLocal();
for (int i = 0; i < cap.length; ++i) {
capIndexes.add(partResult.getVertices().size());
partResult.getVertices().add(cap[i]);
partResult.getNormals().add(capNormal);
}
Collections.reverse(capIndexes);// the indexes ned to be reversed for the face to have fron face outside the beveled line
partResult.getFaces().add(new Face(capIndexes.toArray(new Integer[capIndexes.size()]), false, curveLine.getMaterialNumber(), null, null, partResult));
for (int i = 1; i < capIndexes.size(); ++i) {
partResult.getEdges().add(new Edge(capIndexes.get(i - 1), capIndexes.get(i), 0, true, partResult));
}
// END CAP
cap = bevels.get(bevels.size() - 1);
capIndexes.clear();
capNormal = curveLineVertices[curveLineVertices.length - 1].subtract(curveLineVertices[curveLineVertices.length - 2]).normalizeLocal();
for (int i = 0; i < cap.length; ++i) {
capIndexes.add(partResult.getVertices().size());
partResult.getVertices().add(cap[i]);
partResult.getNormals().add(capNormal);
}
partResult.getFaces().add(new Face(capIndexes.toArray(new Integer[capIndexes.size()]), false, curveLine.getMaterialNumber(), null, null, partResult));
for (int i = 1; i < capIndexes.size(); ++i) {
partResult.getEdges().add(new Edge(capIndexes.get(i - 1), capIndexes.get(i), 0, true, partResult));
}
}
result.append(partResult);
}
}
return result;
}
/**
* The method generates normals for the curve. If any normals were already stored they are discarded.
*/
private void generateNormals() {
Map normalMap = new TreeMap();
for (Face face : faces) {
// the first 3 verts are enough here (all faces are triangles except for the caps, but those are fully flat anyway)
int index1 = face.getIndexes().get(0);
int index2 = face.getIndexes().get(1);
int index3 = face.getIndexes().get(2);
Vector3f n = FastMath.computeNormal(vertices.get(index1), vertices.get(index2), vertices.get(index3));
for (int index : face.getIndexes()) {
Vector3f normal = normalMap.get(index);
if (normal == null) {
normalMap.put(index, n.clone());
} else {
normal.addLocal(n).normalizeLocal();
}
}
}
normals.clear();
Collections.addAll(normals, new Vector3f[normalMap.size()]);
for (Entry entry : normalMap.entrySet()) {
normals.set(entry.getKey(), entry.getValue());
}
}
/**
* the method applies scale for the given bevel points. The points table is
* being modified so expect your result there.
*
* @param points
* the bevel points
* @param centerPoint
* the center point of the bevel
* @param scale
* the scale to be applied
*/
private void applyScale(Vector3f[] points, Vector3f centerPoint, float scale) {
Vector3f taperScaleVector = new Vector3f();
for (Vector3f p : points) {
taperScaleVector.set(centerPoint).subtractLocal(p).multLocal(1 - scale);
p.addLocal(taperScaleVector);
}
}
/**
* A helper class that represents a single bezier line. It consists of Edge's and allows to
* get a subline of a length of the line.
*
* @author Marcin Roguski (Kaelthas)
*/
public static class BezierLine {
/** The edges of the bezier line. */
private Vector3f[] vertices;
/** The material number of the line. */
private int materialNumber;
/** Indicates if the line is smooth of flat. */
private boolean smooth;
/** The length of the line. */
private float length;
/** Indicates if the current line is cyclic or not. */
private boolean cyclic;
public BezierLine(Vector3f[] vertices, int materialNumber, boolean smooth, boolean cyclik) {
this.vertices = vertices;
this.materialNumber = materialNumber;
this.smooth = smooth;
cyclic = cyclik;
this.recomputeLength();
}
public BezierLine scale(Vector3f scale) {
BezierLine result = new BezierLine(vertices, materialNumber, smooth, cyclic);
result.vertices = new Vector3f[vertices.length];
for (int i = 0; i < vertices.length; ++i) {
result.vertices[i] = vertices[i].mult(scale);
}
result.recomputeLength();
return result;
}
public void removeLastVertex() {
Vector3f[] newVertices = new Vector3f[vertices.length - 1];
for (int i = 0; i < vertices.length - 1; ++i) {
newVertices[i] = vertices[i];
}
vertices = newVertices;
this.recomputeLength();
}
private void recomputeLength() {
length = 0;
for (int i = 1; i < vertices.length; ++i) {
length += vertices[i - 1].distance(vertices[i]);
}
if (cyclic) {
// if the first vertex is repeated at the end the distance will be = 0 so it won't affect the result, and if it is not repeated
// then it is necessary to add the length between the last and the first vertex
length += vertices[vertices.length - 1].distance(vertices[0]);
}
}
public Vector3f[] getVertices() {
return this.getVertices(0, 1);
}
public Vector3f[] getVertices(float startSlice, float endSlice) {
if (startSlice == 0 && endSlice == 1) {
return vertices;
}
List result = new ArrayList();
float length = this.getLength(), temp = 0;
float startSliceLength = length * startSlice;
float endSliceLength = length * endSlice;
int index = 1;
if (startSlice > 0) {
while (temp < startSliceLength) {
Vector3f v1 = vertices[index - 1];
Vector3f v2 = vertices[index++];
float edgeLength = v1.distance(v2);
temp += edgeLength;
if (temp == startSliceLength) {
result.add(v2);
} else if (temp > startSliceLength) {
result.add(v1.subtract(v2).normalizeLocal().multLocal(temp - startSliceLength).addLocal(v2));
}
}
}
if (endSlice < 1) {
if (index == vertices.length) {
Vector3f v1 = vertices[vertices.length - 2];
Vector3f v2 = vertices[vertices.length - 1];
result.add(v1.subtract(v2).normalizeLocal().multLocal(length - endSliceLength).addLocal(v2));
} else {
for (int i = index; i < vertices.length && temp < endSliceLength; ++i) {
Vector3f v1 = vertices[index - 1];
Vector3f v2 = vertices[index++];
temp += v1.distance(v2);
if (temp == endSliceLength) {
result.add(v2);
} else if (temp > endSliceLength) {
result.add(v1.subtract(v2).normalizeLocal().multLocal(temp - startSliceLength).addLocal(v2));
}
}
}
} else {
result.addAll(Arrays.asList(Arrays.copyOfRange(vertices, index, vertices.length)));
}
return result.toArray(new Vector3f[result.size()]);
}
/**
* The method computes the value of a point at the certain relational distance from its beginning.
* @param alongRatio
* the relative distance along the curve; should be a value between 0 and 1 inclusive;
* if the value exceeds the boundaries it is truncated to them
* @return computed value along the curve
*/
public Vector3f getValueAlongCurve(float alongRatio) {
alongRatio = FastMath.clamp(alongRatio, 0, 1);
Vector3f result = new Vector3f();
float probeLength = this.getLength() * alongRatio;
float length = 0;
for (int i = 1; i < vertices.length; ++i) {
float edgeLength = vertices[i].distance(vertices[i - 1]);
if (length + edgeLength > probeLength) {
float ratioAlongEdge = (probeLength - length) / edgeLength;
return FastMath.interpolateLinear(ratioAlongEdge, vertices[i - 1], vertices[i]);
} else if (length + edgeLength == probeLength) {
return vertices[i];
}
length += edgeLength;
}
return result;
}
/**
* @return the material number of this bezier line
*/
public int getMaterialNumber() {
return materialNumber;
}
/**
* @return indicates if the line is smooth of flat
*/
public boolean isSmooth() {
return smooth;
}
/**
* @return the length of this bezier line
*/
public float getLength() {
return length;
}
/**
* @return indicates if the current line is cyclic or not
*/
public boolean isCyclic() {
return cyclic;
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy