All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.jme3.scene.plugins.blender.math.DQuaternion Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2009-2012 jMonkeyEngine
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * * Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 *
 * * Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
 *   may be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package com.jme3.scene.plugins.blender.math;

import java.io.IOException;

import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.export.Savable;
import com.jme3.math.Quaternion;

/**
 * DQuaternion defines a single example of a more general class of
 * hypercomplex numbers. DQuaternions extends a rotation in three dimensions to a
 * rotation in four dimensions. This avoids "gimbal lock" and allows for smooth
 * continuous rotation.
 * 
 * DQuaternion is defined by four double point numbers: {x y z w}.
 * 
 * This class's only purpose is to give better accuracy in floating point operations during computations.
 * This is made by copying the original Quaternion class from jme3 core and leaving only required methods and basic computation methods, so that
 * the class is smaller and easier to maintain.
 * Should any other methods be needed, they will be added.
 * 
 * @author Mark Powell
 * @author Joshua Slack
 * @author Marcin Roguski (Kaelthas)
 */
public final class DQuaternion implements Savable, Cloneable, java.io.Serializable {
    private static final long       serialVersionUID = 5009180713885017539L;

    /**
     * Represents the identity quaternion rotation (0, 0, 0, 1).
     */
    public static final DQuaternion IDENTITY         = new DQuaternion();
    public static final DQuaternion DIRECTION_Z      = new DQuaternion();
    public static final DQuaternion ZERO             = new DQuaternion(0, 0, 0, 0);
    protected double                x, y, z, w = 1;

    /**
     * Constructor instantiates a new DQuaternion object
     * initializing all values to zero, except w which is initialized to 1.
     *
     */
    public DQuaternion() {
    }

    /**
     * Constructor instantiates a new DQuaternion object from the
     * given list of parameters.
     *
     * @param x
     *            the x value of the quaternion.
     * @param y
     *            the y value of the quaternion.
     * @param z
     *            the z value of the quaternion.
     * @param w
     *            the w value of the quaternion.
     */
    public DQuaternion(double x, double y, double z, double w) {
        this.set(x, y, z, w);
    }

    public DQuaternion(Quaternion q) {
        this(q.getX(), q.getY(), q.getZ(), q.getW());
    }

    public Quaternion toQuaternion() {
        return new Quaternion((float) x, (float) y, (float) z, (float) w);
    }

    public double getX() {
        return x;
    }

    public double getY() {
        return y;
    }

    public double getZ() {
        return z;
    }

    public double getW() {
        return w;
    }

    /**
     * sets the data in a DQuaternion object from the given list
     * of parameters.
     *
     * @param x
     *            the x value of the quaternion.
     * @param y
     *            the y value of the quaternion.
     * @param z
     *            the z value of the quaternion.
     * @param w
     *            the w value of the quaternion.
     * @return this
     */
    public DQuaternion set(double x, double y, double z, double w) {
        this.x = x;
        this.y = y;
        this.z = z;
        this.w = w;
        return this;
    }

    /**
     * Sets the data in this DQuaternion object to be equal to the
     * passed DQuaternion object. The values are copied producing
     * a new object.
     *
     * @param q
     *            The DQuaternion to copy values from.
     * @return this
     */
    public DQuaternion set(DQuaternion q) {
        x = q.x;
        y = q.y;
        z = q.z;
        w = q.w;
        return this;
    }

    /**
     * Sets this DQuaternion to {0, 0, 0, 1}. Same as calling set(0,0,0,1).
     */
    public void loadIdentity() {
        x = y = z = 0;
        w = 1;
    }

    /**
     * norm returns the norm of this quaternion. This is the dot
     * product of this quaternion with itself.
     *
     * @return the norm of the quaternion.
     */
    public double norm() {
        return w * w + x * x + y * y + z * z;
    }
    
    public DQuaternion fromRotationMatrix(double m00, double m01, double m02,
            double m10, double m11, double m12, double m20, double m21, double m22) {
        // first normalize the forward (F), up (U) and side (S) vectors of the rotation matrix
        // so that the scale does not affect the rotation
        double lengthSquared = m00 * m00 + m10 * m10 + m20 * m20;
        if (lengthSquared != 1f && lengthSquared != 0f) {
            lengthSquared = 1.0 / Math.sqrt(lengthSquared);
            m00 *= lengthSquared;
            m10 *= lengthSquared;
            m20 *= lengthSquared;
        }
        lengthSquared = m01 * m01 + m11 * m11 + m21 * m21;
        if (lengthSquared != 1 && lengthSquared != 0f) {
            lengthSquared = 1.0 / Math.sqrt(lengthSquared);
            m01 *= lengthSquared;
            m11 *= lengthSquared;
            m21 *= lengthSquared;
        }
        lengthSquared = m02 * m02 + m12 * m12 + m22 * m22;
        if (lengthSquared != 1f && lengthSquared != 0f) {
            lengthSquared = 1.0 / Math.sqrt(lengthSquared);
            m02 *= lengthSquared;
            m12 *= lengthSquared;
            m22 *= lengthSquared;
        }

        // Use the Graphics Gems code, from 
        // ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z
        // *NOT* the "Matrix and Quaternions FAQ", which has errors!

        // the trace is the sum of the diagonal elements; see
        // http://mathworld.wolfram.com/MatrixTrace.html
        double t = m00 + m11 + m22;

        // we protect the division by s by ensuring that s>=1
        if (t >= 0) { // |w| >= .5
            double s = Math.sqrt(t + 1); // |s|>=1 ...
            w = 0.5f * s;
            s = 0.5f / s;                 // so this division isn't bad
            x = (m21 - m12) * s;
            y = (m02 - m20) * s;
            z = (m10 - m01) * s;
        } else if (m00 > m11 && m00 > m22) {
            double s = Math.sqrt(1.0 + m00 - m11 - m22); // |s|>=1
            x = s * 0.5f; // |x| >= .5
            s = 0.5f / s;
            y = (m10 + m01) * s;
            z = (m02 + m20) * s;
            w = (m21 - m12) * s;
        } else if (m11 > m22) {
            double s = Math.sqrt(1.0 + m11 - m00 - m22); // |s|>=1
            y = s * 0.5f; // |y| >= .5
            s = 0.5f / s;
            x = (m10 + m01) * s;
            z = (m21 + m12) * s;
            w = (m02 - m20) * s;
        } else {
            double s = Math.sqrt(1.0 + m22 - m00 - m11); // |s|>=1
            z = s * 0.5f; // |z| >= .5
            s = 0.5f / s;
            x = (m02 + m20) * s;
            y = (m21 + m12) * s;
            w = (m10 - m01) * s;
        }

        return this;
    }
    
    /**
     * toRotationMatrix converts this quaternion to a rotational
     * matrix. The result is stored in result. 4th row and 4th column values are
     * untouched. Note: the result is created from a normalized version of this quat.
     * 
     * @param result
     *            The Matrix4f to store the result in.
     * @return the rotation matrix representation of this quaternion.
     */
    public Matrix toRotationMatrix(Matrix result) {
        Vector3d originalScale = new Vector3d();
        
        result.toScaleVector(originalScale);
        result.setScale(1, 1, 1);
        double norm = this.norm();
        // we explicitly test norm against one here, saving a division
        // at the cost of a test and branch.  Is it worth it?
        double s = norm == 1f ? 2f : norm > 0f ? 2f / norm : 0;

        // compute xs/ys/zs first to save 6 multiplications, since xs/ys/zs
        // will be used 2-4 times each.
        double xs = x * s;
        double ys = y * s;
        double zs = z * s;
        double xx = x * xs;
        double xy = x * ys;
        double xz = x * zs;
        double xw = w * xs;
        double yy = y * ys;
        double yz = y * zs;
        double yw = w * ys;
        double zz = z * zs;
        double zw = w * zs;

        // using s=2/norm (instead of 1/norm) saves 9 multiplications by 2 here
        result.set(0, 0, 1 - (yy + zz));
        result.set(0, 1, xy - zw);
        result.set(0, 2, xz + yw);
        result.set(1, 0, xy + zw);
        result.set(1, 1, 1 - (xx + zz));
        result.set(1, 2, yz - xw);
        result.set(2, 0, xz - yw);
        result.set(2, 1, yz + xw);
        result.set(2, 2, 1 - (xx + yy));
        
        result.setScale(originalScale);
        
        return result;
    }
    
    /**
     * fromAngleAxis sets this quaternion to the values specified
     * by an angle and an axis of rotation. This method creates an object, so
     * use fromAngleNormalAxis if your axis is already normalized.
     *
     * @param angle
     *            the angle to rotate (in radians).
     * @param axis
     *            the axis of rotation.
     * @return this quaternion
     */
    public DQuaternion fromAngleAxis(double angle, Vector3d axis) {
        Vector3d normAxis = axis.normalize();
        this.fromAngleNormalAxis(angle, normAxis);
        return this;
    }

    /**
     * fromAngleNormalAxis sets this quaternion to the values
     * specified by an angle and a normalized axis of rotation.
     *
     * @param angle
     *            the angle to rotate (in radians).
     * @param axis
     *            the axis of rotation (already normalized).
     */
    public DQuaternion fromAngleNormalAxis(double angle, Vector3d axis) {
        if (axis.x == 0 && axis.y == 0 && axis.z == 0) {
            this.loadIdentity();
        } else {
            double halfAngle = 0.5f * angle;
            double sin = Math.sin(halfAngle);
            w = Math.cos(halfAngle);
            x = sin * axis.x;
            y = sin * axis.y;
            z = sin * axis.z;
        }
        return this;
    }

    /**
     * add adds the values of this quaternion to those of the
     * parameter quaternion. The result is returned as a new quaternion.
     *
     * @param q
     *            the quaternion to add to this.
     * @return the new quaternion.
     */
    public DQuaternion add(DQuaternion q) {
        return new DQuaternion(x + q.x, y + q.y, z + q.z, w + q.w);
    }

    /**
     * add adds the values of this quaternion to those of the
     * parameter quaternion. The result is stored in this DQuaternion.
     *
     * @param q
     *            the quaternion to add to this.
     * @return This DQuaternion after addition.
     */
    public DQuaternion addLocal(DQuaternion q) {
        x += q.x;
        y += q.y;
        z += q.z;
        w += q.w;
        return this;
    }

    /**
     * subtract subtracts the values of the parameter quaternion
     * from those of this quaternion. The result is returned as a new
     * quaternion.
     *
     * @param q
     *            the quaternion to subtract from this.
     * @return the new quaternion.
     */
    public DQuaternion subtract(DQuaternion q) {
        return new DQuaternion(x - q.x, y - q.y, z - q.z, w - q.w);
    }

    /**
     * subtract subtracts the values of the parameter quaternion
     * from those of this quaternion. The result is stored in this DQuaternion.
     *
     * @param q
     *            the quaternion to subtract from this.
     * @return This DQuaternion after subtraction.
     */
    public DQuaternion subtractLocal(DQuaternion q) {
        x -= q.x;
        y -= q.y;
        z -= q.z;
        w -= q.w;
        return this;
    }

    /**
     * mult multiplies this quaternion by a parameter quaternion.
     * The result is returned as a new quaternion. It should be noted that
     * quaternion multiplication is not commutative so q * p != p * q.
     *
     * @param q
     *            the quaternion to multiply this quaternion by.
     * @return the new quaternion.
     */
    public DQuaternion mult(DQuaternion q) {
        return this.mult(q, null);
    }

    /**
     * mult multiplies this quaternion by a parameter quaternion.
     * The result is returned as a new quaternion. It should be noted that
     * quaternion multiplication is not commutative so q * p != p * q.
     *
     * It IS safe for q and res to be the same object.
     * It IS NOT safe for this and res to be the same object.
     *
     * @param q
     *            the quaternion to multiply this quaternion by.
     * @param res
     *            the quaternion to store the result in.
     * @return the new quaternion.
     */
    public DQuaternion mult(DQuaternion q, DQuaternion res) {
        if (res == null) {
            res = new DQuaternion();
        }
        double qw = q.w, qx = q.x, qy = q.y, qz = q.z;
        res.x = x * qw + y * qz - z * qy + w * qx;
        res.y = -x * qz + y * qw + z * qx + w * qy;
        res.z = x * qy - y * qx + z * qw + w * qz;
        res.w = -x * qx - y * qy - z * qz + w * qw;
        return res;
    }

    /**
     * mult multiplies this quaternion by a parameter vector. The
     * result is returned as a new vector.
     *
     * @param v
     *            the vector to multiply this quaternion by.
     * @return the new vector.
     */
    public Vector3d mult(Vector3d v) {
        return this.mult(v, null);
    }

    /**
     * Multiplies this DQuaternion by the supplied quaternion. The result is
     * stored in this DQuaternion, which is also returned for chaining. Similar
     * to this *= q.
     *
     * @param q
     *            The DQuaternion to multiply this one by.
     * @return This DQuaternion, after multiplication.
     */
    public DQuaternion multLocal(DQuaternion q) {
        double x1 = x * q.w + y * q.z - z * q.y + w * q.x;
        double y1 = -x * q.z + y * q.w + z * q.x + w * q.y;
        double z1 = x * q.y - y * q.x + z * q.w + w * q.z;
        w = -x * q.x - y * q.y - z * q.z + w * q.w;
        x = x1;
        y = y1;
        z = z1;
        return this;
    }

    /**
     * mult multiplies this quaternion by a parameter vector. The
     * result is returned as a new vector.
     * 
     * @param v
     *            the vector to multiply this quaternion by.
     * @param store
     *            the vector to store the result in. It IS safe for v and store
     *            to be the same object.
     * @return the result vector.
     */
    public Vector3d mult(Vector3d v, Vector3d store) {
        if (store == null) {
            store = new Vector3d();
        }
        if (v.x == 0 && v.y == 0 && v.z == 0) {
            store.set(0, 0, 0);
        } else {
            double vx = v.x, vy = v.y, vz = v.z;
            store.x = w * w * vx + 2 * y * w * vz - 2 * z * w * vy + x * x * vx + 2 * y * x * vy + 2 * z * x * vz - z * z * vx - y * y * vx;
            store.y = 2 * x * y * vx + y * y * vy + 2 * z * y * vz + 2 * w * z * vx - z * z * vy + w * w * vy - 2 * x * w * vz - x * x * vy;
            store.z = 2 * x * z * vx + 2 * y * z * vy + z * z * vz - 2 * w * y * vx - y * y * vz + 2 * w * x * vy - x * x * vz + w * w * vz;
        }
        return store;
    }

    /**
     *
     * toString creates the string representation of this DQuaternion. The values of the quaternion are displaced (x,
     * y, z, w), in the following manner: 
* (x, y, z, w) * * @return the string representation of this object. * @see java.lang.Object#toString() */ @Override public String toString() { return "(" + x + ", " + y + ", " + z + ", " + w + ")"; } /** * equals determines if two quaternions are logically equal, * that is, if the values of (x, y, z, w) are the same for both quaternions. * * @param o * the object to compare for equality * @return true if they are equal, false otherwise. */ @Override public boolean equals(Object o) { if (!(o instanceof DQuaternion)) { return false; } if (this == o) { return true; } DQuaternion comp = (DQuaternion) o; if (Double.compare(x, comp.x) != 0) { return false; } if (Double.compare(y, comp.y) != 0) { return false; } if (Double.compare(z, comp.z) != 0) { return false; } if (Double.compare(w, comp.w) != 0) { return false; } return true; } /** * * hashCode returns the hash code value as an integer and is * supported for the benefit of hashing based collection classes such as * Hashtable, HashMap, HashSet etc. * * @return the hashcode for this instance of DQuaternion. * @see java.lang.Object#hashCode() */ @Override public int hashCode() { long hash = 37; hash = 37 * hash + Double.doubleToLongBits(x); hash = 37 * hash + Double.doubleToLongBits(y); hash = 37 * hash + Double.doubleToLongBits(z); hash = 37 * hash + Double.doubleToLongBits(w); return (int) hash; } public void write(JmeExporter e) throws IOException { OutputCapsule cap = e.getCapsule(this); cap.write(x, "x", 0); cap.write(y, "y", 0); cap.write(z, "z", 0); cap.write(w, "w", 1); } public void read(JmeImporter e) throws IOException { InputCapsule cap = e.getCapsule(this); x = cap.readFloat("x", 0); y = cap.readFloat("y", 0); z = cap.readFloat("z", 0); w = cap.readFloat("w", 1); } @Override public DQuaternion clone() { try { return (DQuaternion) super.clone(); } catch (CloneNotSupportedException e) { throw new AssertionError(); // can not happen } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy