All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.jme3.scene.plugins.blender.textures.UVProjectionGenerator Maven / Gradle / Ivy

The newest version!
package com.jme3.scene.plugins.blender.textures;

import com.jme3.bounding.BoundingBox;
import com.jme3.bounding.BoundingSphere;
import com.jme3.math.FastMath;
import com.jme3.math.Triangle;
import com.jme3.math.Vector3f;
import com.jme3.scene.plugins.blender.textures.UVCoordinatesGenerator.BoundingTube;

/**
 * This class helps with projection calculations.
 * 
 * @author Marcin Roguski (Kaelthas)
 */
/* package */class UVProjectionGenerator {
    /**
     * 2D texture mapping (projection)
     * @author Marcin Roguski (Kaelthas)
     */
    public static enum UVProjectionType {
        PROJECTION_FLAT(0), PROJECTION_CUBE(1), PROJECTION_TUBE(2), PROJECTION_SPHERE(3);

        public final int blenderValue;

        private UVProjectionType(int blenderValue) {
            this.blenderValue = blenderValue;
        }

        public static UVProjectionType valueOf(int blenderValue) {
            for (UVProjectionType projectionType : UVProjectionType.values()) {
                if (projectionType.blenderValue == blenderValue) {
                    return projectionType;
                }
            }
            return null;
        }
    }

    /**
     * Flat projection for 2D textures.
     * 
     * @param mesh
     *            mesh that is to be projected
     * @param bb
     *            the bounding box for projecting
     * @return UV coordinates after the projection
     */
    public static float[] flatProjection(float[] positions, BoundingBox bb) {
        Vector3f min = bb.getMin(null);
        float[] ext = new float[] { bb.getXExtent() * 2.0f, bb.getZExtent() * 2.0f };
        float[] uvCoordinates = new float[positions.length / 3 * 2];
        for (int i = 0, j = 0; i < positions.length; i += 3, j += 2) {
            uvCoordinates[j] = (positions[i] - min.x) / ext[0];
            // skip the Y-coordinate
            uvCoordinates[j + 1] = (positions[i + 2] - min.z) / ext[1];
        }
        return uvCoordinates;
    }

    /**
     * Cube projection for 2D textures.
     * 
     * @param positions
     *            points to be projected
     * @param bb
     *            the bounding box for projecting
     * @return UV coordinates after the projection
     */
    public static float[] cubeProjection(float[] positions, BoundingBox bb) {
        Triangle triangle = new Triangle();
        Vector3f x = new Vector3f(1, 0, 0);
        Vector3f y = new Vector3f(0, 1, 0);
        Vector3f z = new Vector3f(0, 0, 1);
        Vector3f min = bb.getMin(null);
        float[] ext = new float[] { bb.getXExtent() * 2.0f, bb.getYExtent() * 2.0f, bb.getZExtent() * 2.0f };

        float[] uvCoordinates = new float[positions.length / 3 * 2];
        float borderAngle = (float) Math.sqrt(2.0f) / 2.0f;
        for (int i = 0, pointIndex = 0; i < positions.length; i += 9) {
            triangle.set(0, positions[i], positions[i + 1], positions[i + 2]);
            triangle.set(1, positions[i + 3], positions[i + 4], positions[i + 5]);
            triangle.set(2, positions[i + 6], positions[i + 7], positions[i + 8]);
            Vector3f n = triangle.getNormal();
            float dotNX = Math.abs(n.dot(x));
            float dorNY = Math.abs(n.dot(y));
            float dotNZ = Math.abs(n.dot(z));
            if (dotNX > borderAngle) {
                if (dotNZ < borderAngle) {// discard X-coordinate
                    uvCoordinates[pointIndex++] = (triangle.get1().y - min.y) / ext[1];
                    uvCoordinates[pointIndex++] = (triangle.get1().z - min.z) / ext[2];
                    uvCoordinates[pointIndex++] = (triangle.get2().y - min.y) / ext[1];
                    uvCoordinates[pointIndex++] = (triangle.get2().z - min.z) / ext[2];
                    uvCoordinates[pointIndex++] = (triangle.get3().y - min.y) / ext[1];
                    uvCoordinates[pointIndex++] = (triangle.get3().z - min.z) / ext[2];
                } else {// discard Z-coordinate
                    uvCoordinates[pointIndex++] = (triangle.get1().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get1().y - min.y) / ext[1];
                    uvCoordinates[pointIndex++] = (triangle.get2().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get2().y - min.y) / ext[1];
                    uvCoordinates[pointIndex++] = (triangle.get3().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get3().y - min.y) / ext[1];
                }
            } else {
                if (dorNY > borderAngle) {// discard Y-coordinate
                    uvCoordinates[pointIndex++] = (triangle.get1().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get1().z - min.z) / ext[2];
                    uvCoordinates[pointIndex++] = (triangle.get2().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get2().z - min.z) / ext[2];
                    uvCoordinates[pointIndex++] = (triangle.get3().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get3().z - min.z) / ext[2];
                } else {// discard Z-coordinate
                    uvCoordinates[pointIndex++] = (triangle.get1().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get1().y - min.y) / ext[1];
                    uvCoordinates[pointIndex++] = (triangle.get2().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get2().y - min.y) / ext[1];
                    uvCoordinates[pointIndex++] = (triangle.get3().x - min.x) / ext[0];
                    uvCoordinates[pointIndex++] = (triangle.get3().y - min.y) / ext[1];
                }
            }
            triangle.setNormal(null);// clear the previous normal vector
        }
        return uvCoordinates;
    }

    /**
     * Tube projection for 2D textures.
     * 
     * @param positions
     *            points to be projected
     * @param bt
     *            the bounding tube for projecting
     * @return UV coordinates after the projection
     */
    public static float[] tubeProjection(float[] positions, BoundingTube bt) {
        float[] uvCoordinates = new float[positions.length / 3 * 2];
        Vector3f v = new Vector3f();
        float cx = bt.getCenter().x, cz = bt.getCenter().z;
        Vector3f uBase = new Vector3f(0, 0, -1);

        float vBase = bt.getCenter().y - bt.getHeight() * 0.5f;
        for (int i = 0, j = 0; i < positions.length; i += 3, j += 2) {
            // calculating U
            v.set(positions[i] - cx, 0, positions[i + 2] - cz);
            v.normalizeLocal();
            float angle = v.angleBetween(uBase);// result between [0; PI]
            if (v.x < 0) {// the angle should be greater than PI, we're on the other part of the image then
                angle = FastMath.TWO_PI - angle;
            }
            uvCoordinates[j] = angle / FastMath.TWO_PI;

            // calculating V
            float y = positions[i + 1];
            uvCoordinates[j + 1] = (y - vBase) / bt.getHeight();
        }

        // looking for splitted triangles
        Triangle triangle = new Triangle();
        for (int i = 0; i < positions.length; i += 9) {
            triangle.set(0, positions[i], positions[i + 1], positions[i + 2]);
            triangle.set(1, positions[i + 3], positions[i + 4], positions[i + 5]);
            triangle.set(2, positions[i + 6], positions[i + 7], positions[i + 8]);
            float sgn1 = Math.signum(triangle.get1().x - cx);
            float sgn2 = Math.signum(triangle.get2().x - cx);
            float sgn3 = Math.signum(triangle.get3().x - cx);
            float xSideFactor = sgn1 + sgn2 + sgn3;
            float ySideFactor = Math.signum(triangle.get1().z - cz) + Math.signum(triangle.get2().z - cz) + Math.signum(triangle.get3().z - cz);
            if ((xSideFactor > -3 || xSideFactor < 3) && ySideFactor < 0) {// the triangle is on the splitting plane
                if (sgn1 == 1.0f) {
                    uvCoordinates[i / 3 * 2] += 1.0f;
                }
                if (sgn2 == 1.0f) {
                    uvCoordinates[(i / 3 + 1) * 2] += 1.0f;
                }
                if (sgn3 == 1.0f) {
                    uvCoordinates[(i / 3 + 2) * 2] += 1.0f;
                }
            }
        }
        return uvCoordinates;
    }

    /**
     * Sphere projection for 2D textures.
     * 
     * @param positions
     *            points to be projected
     * @param bb
     *            the bounding box for projecting
     * @return UV coordinates after the projection
     */
    public static float[] sphereProjection(float[] positions, BoundingSphere bs) {// TODO: rotate it to be vertical
        float[] uvCoordinates = new float[positions.length / 3 * 2];
        Vector3f v = new Vector3f();
        float cx = bs.getCenter().x, cy = bs.getCenter().y, cz = bs.getCenter().z;
        Vector3f uBase = new Vector3f(0, -1, 0);
        Vector3f vBase = new Vector3f(0, 0, -1);

        for (int i = 0, j = 0; i < positions.length; i += 3, j += 2) {
            // calculating U
            v.set(positions[i] - cx, positions[i + 1] - cy, 0);
            v.normalizeLocal();
            float angle = v.angleBetween(uBase);// result between [0; PI]
            if (v.x < 0) {// the angle should be greater than PI, we're on the other part of the image then
                angle = FastMath.TWO_PI - angle;
            }
            uvCoordinates[j] = angle / FastMath.TWO_PI;

            // calculating V
            v.set(positions[i] - cx, positions[i + 1] - cy, positions[i + 2] - cz);
            v.normalizeLocal();
            angle = v.angleBetween(vBase);// result between [0; PI]
            uvCoordinates[j + 1] = angle / FastMath.PI;
        }

        // looking for splitted triangles
        Triangle triangle = new Triangle();
        for (int i = 0; i < positions.length; i += 9) {
            triangle.set(0, positions[i], positions[i + 1], positions[i + 2]);
            triangle.set(1, positions[i + 3], positions[i + 4], positions[i + 5]);
            triangle.set(2, positions[i + 6], positions[i + 7], positions[i + 8]);
            float sgn1 = Math.signum(triangle.get1().x - cx);
            float sgn2 = Math.signum(triangle.get2().x - cx);
            float sgn3 = Math.signum(triangle.get3().x - cx);
            float xSideFactor = sgn1 + sgn2 + sgn3;
            float ySideFactor = Math.signum(triangle.get1().y - cy) + Math.signum(triangle.get2().y - cy) + Math.signum(triangle.get3().y - cy);
            if ((xSideFactor > -3 || xSideFactor < 3) && ySideFactor < 0) {// the triangle is on the splitting plane
                if (sgn1 == 1.0f) {
                    uvCoordinates[i / 3 * 2] += 1.0f;
                }
                if (sgn2 == 1.0f) {
                    uvCoordinates[(i / 3 + 1) * 2] += 1.0f;
                }
                if (sgn3 == 1.0f) {
                    uvCoordinates[(i / 3 + 2) * 2] += 1.0f;
                }
            }
        }
        return uvCoordinates;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy